MATH 142

Midterm 2
November 5, 2002

NAME (please print legibly): \qquad
Your University ID Number:
Circle your Instructor's Name along with the Lecture Time:
Zokhrab Moustafaev (MWF 9:00-9:50) Carl Mueller (MW 2:25-4:40)

- No calculators are allowed on this exam.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your final answers in the spaces provided.

QUESTION	VALUE	SCORE
1	30	
2	26	
3	15	
4	39	
5	15	
6	15	
7	15	
8	15	
9	15	
10	15	
TOTAL	200	

1. (30 pts) Solve the following integrals.
(a) (10 pts)

$$
\int 3 \sin (2 x) d x
$$

(b) (10)

$$
\int \frac{2}{\sqrt{x}} d x
$$

(c) (10)

$$
\int_{-4}^{-2} \frac{2+x}{5 x} d x
$$

2. (26 pts)

(a) (13 pts) Find

$$
\frac{d}{d x} \int_{0}^{\sqrt{x}}\left(1+t^{4}\right) d t
$$

(b) (13 pts) Find

$$
\frac{d}{d x} \int_{x^{2}}^{0} \sin ^{4}(t) d t
$$

3. (15 pts) Suppose that you keep track of the rainfall, in inches per hour, for Rochester. Time is measured in hours. It is now time 0 . At time t, it is raining at $\left(t^{2}+t\right) / 10,000$ inches per hour. Find the amount of rainfall over a 3-day period, starting now.
Hint: How many hours are in 3 days?
4. (39 pts) Solve the following integrals.
(a) (13 pts)

$$
\int \frac{\sin (\ln (x))}{x} d x
$$

(b) (13 pts)

$$
\int_{0}^{\pi / 4} \cos (2 x) e^{\sin (2 x)} d x
$$

(c) (13 pts)

$$
\int_{0}^{1} \frac{e^{x}}{e^{x}+1} d x
$$

5. (15 pts) Find the area between the curves

$$
\begin{aligned}
& y=3 x+3 \\
& y=3-x^{2}
\end{aligned}
$$

between $x=0$ and $x=1$.
6. (15 pts) Find the area between the curves

$$
\begin{aligned}
& y=x^{2}-1 \\
& y=x+1
\end{aligned}
$$

Hint: Find the points at which the curves intersect.
7. (15 pts) Find the volume of the solid obtained by rotating the region bounded by the given curves, about the x-axis.

$$
\begin{aligned}
& y=x^{2} \\
& y=2 x
\end{aligned}
$$

8. (15 pts) Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y-axis.
WARNING Unless you use the shell method, you will not get full credit.

$$
\begin{aligned}
& y=e^{x^{2}} \\
& y=0 \\
& x=0 \\
& x=4
\end{aligned}
$$

9. (15 pts) A spring at rest has length of 1 meter. Assuming that the spring constant k equals 10 Newtons per meter squared. Calculate the work required to stretch the spring so as to increase its length to 3 meters.
10. (15 pts) Find the average value of $f(x)=x \sqrt{1+x^{2}}$ over $[0,4]$.
