MATH 142

Final

December 16, 2002

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Circle your Instructor's Name along with the Lecture Time:
Zokhrab Moustafaev (MWF 9:00-9:50) Carl Mueller (MW 3:25-4:40)

- No calculators are allowed on this exam.
- You must do both parts of the final. The first part can make up for a bad midterm grade, but the midterms cannot make up for the first part of the final.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your final answers in the spaces provided.

Part A		
QUESTION	VALUE	SCORE
1	16	
2	14	
3	20	
4	16	
5	24	
6	20	
7	20	
8	20	
TOTAL	150	

Part B		
QUESTION	VALUE	SCORE
9	16	
10	28	
11	18	
12	36	
13	8	
14	16	
15	8	
16	10	
17	10	
TOTAL	150	

Part A

1. (16 pts) Let

$$
f(x)=\frac{1}{3} x^{3}-2 x^{2}+3 x
$$

(a) (5 points) Find the intervals on which $f(x)$ is increasing and decreasing.
(b) (5 points) Find the local extrema of $f(x)$.
(c) (6 points) Find the intervals on which f is concave up and concave down.

2. (14 pts)

Let

$$
y=\frac{x^{2}-2 x+2}{2 x^{2}-5 x+3} .
$$

(a) (7 points) Find the vertical asymptotes.
(b) (7 points) Find the horizontal asymptotes.

3. (20 pts)

A box with a square base and open top must have a volume $32 \mathrm{~m}^{3}$. Find the dimensions of the box that minimizes the amount of material used.
4. (16 pts)

Differentiate the following functions.
(a) (8 points)

$$
\int_{x}^{0} e^{-2 t^{2}} d t
$$

(b) (8 points)

$$
\int_{0}^{x^{3}} \sin \left(t^{2}\right) d t
$$

5. (24 pts)

Evaluate the following integrals.
(a) (8 points)

$$
\int\left(x^{2}-e^{2 x}+\cos (3 x)\right) d x
$$

(b) (8 points)

$$
\int \frac{d x}{x \ln (2 x)}
$$

(c) (8 points)

$$
\int_{0}^{\ln (\pi / 4)} e^{x} \cos \left(e^{x}\right) d x
$$

6. (20 pts)

Find the area between the curves

$$
y=x^{2}, \quad y=x, \quad x=0, \quad x=2
$$

7. (20 pts)

Find the volume of the solid obtained by rotating about the line $y=2$, the region enclosed by the curves

$$
y=\sqrt{x}
$$

and

$$
y=x
$$

8. (20 pts)

A spring has a natural length of 0.1 m . If a 20 N force is required to keep it stretched to a length $0.3 m$, how much work is required to stretch it from $0.1 m$ to $0.2 m$?

Part B

9. (16 pts) Solve the following integrals.
(a) (8 points)

$$
\int x^{2} e^{-2 x} d x
$$

(b) (8 points)

$$
\int \frac{\ln x}{x^{3}} d x
$$

10. (28 pts)
(a) (9 points) Find

$$
\int \sin ^{2}(x) \cos ^{3}(x) d x
$$

(b) (10 points) Find

$$
\int \sin ^{2}(x) \cos ^{2}(x) d x
$$

(c) (9 points) Find

$$
\int \tan (x) \sec ^{3}(x) d x
$$

11. (18 pts) Solve the following integrals.
(a) (9 points)

$$
\int \frac{x^{3}}{\sqrt{25-x^{2}}} d x
$$

(b) (9 points)

$$
\int \frac{d x}{x^{2} \sqrt{x^{2}+4}}
$$

12. (36 pts) Solve the following integrals.
(a) (9 points)

$$
\int \frac{2}{x^{2}-x-6} d x
$$

(b) (9 points)

$$
\int \frac{x^{2}-x+2}{x+1} d x
$$

(c) (9 points)

$$
\int \frac{x+4}{x^{3}+2 x^{2}} d x
$$

(d) (9 points)

$$
\int \frac{1}{x^{3}+3 x^{2}+2 x} d x
$$

13. (8 pts) Approximate

$$
\int_{0}^{4} \sqrt{x^{3}+1} d x
$$

using 4 intervals of equal length, using the trapezoidal rule. You do not have to evaluate the square roots.
14. (16 pts) Solve the following integrals.
(a) (8 points)

$$
\int_{-1}^{4} \frac{1}{(x-1)^{4}} d x
$$

(b) (8 points)

$$
\int_{-3}^{-1} \frac{1}{(x+2)^{1 / 3}} d x
$$

15. (8 pts) For the following problem, SET UP THE INTEGRAL, BUT DO NOT SOLVE IT. What is the length of the curve $y=x^{3}+x$ between $x=-1$ and $x=3$?
16. (10 pts) Suppose that a cubical tank with 2 meters on each side is full of water. Find the force on one of the vertical sides, in Newtons.
17. (10 pts) Find the center of mass of a right triangle with vertices at $(0,0),(0,1)$, and $(1,0)$.
