		Midte	rm II	
		April 2	, 2024	
Nam	e:		(Ple	ase $\underline{\text{print}}$ clearly)
UR I	[D :			
Instr	uctions:			
		ninutes to work on this exa 10 pages. Please do not 1		responsible for checking the pages .
•	No calculators			otes are allowed during the
•	Show all wo	rk and justify all answei	r s. Correct a	nswers with insufficient wo
	not be given f Numerical or		of answers a	are not required, except
		stated otherwise.	led at the e	nd of the exam. Work or
	1 0	-		n the page containing the re
		all final answers.		
ית	lge of Hon	4-		
	erm II, Math 1 REFEREN	142 UR ID: CE, NO QUESTION O	N THIS P	Page 2 AGE
FOR	REFEREN		N THIS P	
FOR	REFEREN	CE, NO QUESTION O	N THIS P	
FOR	REFEREN e of common Function cf(x)	CE, NO QUESTION O antiderivatives: Particular antiderivative cF(x)	Function sin x	AGE Particular antiderivative $-\cos x$
FOR	e of common Function	CE, NO QUESTION O antiderivatives: Particular antiderivative cF(x) F(x) + G(x)	Function	AGE Particular antiderivative
FOR	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$	CE, NO QUESTION O antiderivatives: Particular antiderivative cF(x) F(x) + G(x) $\frac{x^{n+1}}{n+1}$ $\ln x $	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$
FOR	REFEREN e of common Function cf(x) f(x) + g(x) $x^n(n \neq 1)$ $\frac{1}{x}$ e^x	CE, NO QUESTION O antiderivatives: Particular antiderivative cF(x) F(x) + G(x) $\frac{x^{n+1}}{n+1}$ $\ln x $ e^x	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$
FOR Table Note be ma	REFEREN e of common Function cf(x) f(x) + g(x) $x^n(n \neq 1)$ $\frac{1}{x}$ e^x that the follow	CE, NO QUESTION O antiderivatives: Particular antiderivative cF(x) F(x) + G(x) $\frac{x^{n+1}}{n+1}$ $\ln x $ e^x wing formulas may not be a suit individual problems.	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$
FOR Table Note be ma	REFEREN e of common Function cf(x) f(x) + g(x) $x^n(n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to a me by disks	CE, NO QUESTION O antiderivatives: Particular antiderivative cF(x) F(x) + G(x) $\frac{x^{n+1}}{n+1}$ $\ln x $ e^x ving formulas may not be a suit individual problems. /washers:	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable in	AGE Particular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n
FOR Table Note be ma Volue	REFEREN e of common Function cf(x) f(x) + g(x) $x^n(n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to a me by disks	CE, NO QUESTION O antiderivatives: Particular antiderivative cF(x) F(x) + G(x) $\frac{x^{n+1}}{n+1}$ $\ln x $ e^x wing formulas may not be a suit individual problems. /washers: $f = \int_a^b \pi (R^2 - r^2) dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable in	AGE Particular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n
FOR Table Note be ma Volue	REFEREN e of common Function cf(x) f(x) + g(x) $x^n(n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/	CE, NO QUESTION O antiderivatives: Particular antiderivative cF(x) F(x) + G(x) $\frac{x^{n+1}}{n+1}$ $\ln x $ e^x wing formulas may not be a suit individual problems. /washers: $f = \int_a^b \pi (R^2 - r^2) dx$ of drical shells:	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{x}^{x} \frac{1}{\sqrt{1-x^2}} \frac{1}{$	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} \pi (R^{2} - r^{2}) dy$
FOR Table Note be ma Volue	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/	CE, NO QUESTION O antiderivatives: Particular antiderivative cF(x) F(x) + G(x) $\frac{x^{n+1}}{n+1}$ $\ln x $ e^x wing formulas may not be a suit individual problems. /washers: $f = \int_a^b \pi (R^2 - r^2) dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1} V$	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$
FOR Table Note be ma Volus	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/	CE, NO QUESTION O antiderivatives: Particular antiderivative cF(x) F(x) + G(x) $\frac{x^{n+1}}{n+1}$ $\ln x $ e^x wing formulas may not be a suit individual problems. /washers: $T = \int_a^b \pi (R^2 - r^2) dx$ of drical shells: $V = \int_a^b 2\pi r h dx$ of to move an object alor	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1}$ r $V = \int_{0}^{1}$ ng a line from	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$
FOR Table Note be ma Volu: Volu:	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/ W me by cylind k : The work d	CE, NO QUESTION O antiderivatives: Particular antiderivative $cF(x)$ $F(x) + G(x)$ $\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x} wing formulas may not be a suit individual problems. /washers: $T = \int_{a}^{b} \pi (R^{2} - r^{2}) dx$ of drical shells: $V = \int_{a}^{b} 2\pi r h dx$ of lone to move an object alor $W = \int_{a}^{b} dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1} f(x) dx.$	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$ a a a a a a a f_{a}^{b} $2\pi rhdy$ a
FOR Table Note be ma Volu: Volu:	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/ W me by cylind k : The work d	CE, NO QUESTION O antiderivatives: Particular antiderivative $\frac{cF(x)}{F(x) + G(x)}$ $\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x} wing formulas may not be a suit individual problems. /washers: $T = \int_{a}^{b} \pi (R^{2} - r^{2}) dx$ of drical shells: $V = \int_{a}^{b} 2\pi r h dx$ of an object alor $W = \int_{a}^{b} e^{x} dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1} f(x) dx.$ opring distance	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$
FOR Table Note be ma Volu: Volu:	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/ W me by cylind k : The work d	CE, NO QUESTION O antiderivatives: Particular antiderivative $cF(x)$ $F(x) + G(x)$ $\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x} wing formulas may not be a suit individual problems. /washers: $T = \int_{a}^{b} \pi (R^{2} - r^{2}) dx$ of drical shells: $V = \int_{a}^{b} 2\pi r h dx$ of lone to move an object alor $W = \int_{a}^{b} dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1} f(x) dx.$ opring distance	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$ a a a a a a a f_{a}^{b} $2\pi rhdy$ a
FOR Table Note be ma Volu: Volu:	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/ W me by cylind k : The work d	CE, NO QUESTION O antiderivatives: Particular antiderivative $\frac{cF(x)}{F(x) + G(x)}$ $\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x} wing formulas may not be a suit individual problems. /washers: $T = \int_{a}^{b} \pi (R^{2} - r^{2}) dx$ of drical shells: $V = \int_{a}^{b} 2\pi r h dx$ of an object alor $W = \int_{a}^{b} e^{x} dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1} f(x) dx.$ opring distance	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$ a a a a a a a f_{a}^{b} $2\pi rhdy$ a
FOR Table Note be ma Volu: Volu:	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/ W me by cylind k : The work d	CE, NO QUESTION O antiderivatives: Particular antiderivative $\frac{cF(x)}{F(x) + G(x)}$ $\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x} wing formulas may not be a suit individual problems. /washers: $T = \int_{a}^{b} \pi (R^{2} - r^{2}) dx$ of drical shells: $V = \int_{a}^{b} 2\pi r h dx$ of an object alor $W = \int_{a}^{b} e^{x} dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1} f(x) dx.$ opring distance	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$ a a a a a a a f_{a}^{b} $2\pi rhdy$ a
FOR Table Note be ma Volu: Volu:	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/ W me by cylind k : The work d	CE, NO QUESTION O antiderivatives: Particular antiderivative $\frac{cF(x)}{F(x) + G(x)}$ $\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x} wing formulas may not be a suit individual problems. /washers: $T = \int_{a}^{b} \pi (R^{2} - r^{2}) dx$ of drical shells: $V = \int_{a}^{b} 2\pi r h dx$ of an object alor $W = \int_{a}^{b} e^{x} dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1} f(x) dx.$ opring distance	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$ a a a a a a a f_{a}^{b} $2\pi rhdy$ a
FOR Table Note be ma Volu: Volu:	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/ W me by cylind k : The work d	CE, NO QUESTION O antiderivatives: Particular antiderivative $\frac{cF(x)}{F(x) + G(x)}$ $\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x} wing formulas may not be a suit individual problems. /washers: $T = \int_{a}^{b} \pi (R^{2} - r^{2}) dx$ of drical shells: $V = \int_{a}^{b} 2\pi r h dx$ of an object alor $W = \int_{a}^{b} e^{x} dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1} f(x) dx.$ opring distance	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$ a a a a a a a f_{a}^{b} $2\pi rhdy$ a
FOR Table Note be ma Volu: Volu:	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/ W me by cylind k : The work d	CE, NO QUESTION O antiderivatives: Particular antiderivative $\frac{cF(x)}{F(x) + G(x)}$ $\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x} wing formulas may not be a suit individual problems. /washers: $T = \int_{a}^{b} \pi (R^{2} - r^{2}) dx$ of drical shells: $V = \int_{a}^{b} 2\pi r h dx$ of an object alor $W = \int_{a}^{b} e^{x} dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1} f(x) dx.$ opring distance	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$ a a a a a a a f_{a}^{b} $2\pi rhdy$ a
FOR Table Note be ma Volu: Volu:	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/ W me by cylind k : The work d	CE, NO QUESTION O antiderivatives: Particular antiderivative $\frac{cF(x)}{F(x) + G(x)}$ $\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x} wing formulas may not be a suit individual problems. /washers: $T = \int_{a}^{b} \pi (R^{2} - r^{2}) dx$ of drical shells: $V = \int_{a}^{b} 2\pi r h dx$ of an object alor $W = \int_{a}^{b} e^{x} dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1} f(x) dx.$ opring distance	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$ a a a a a a a f_{a}^{b} $2\pi rhdy$ a
FOR Table Note be ma Volu: Volu:	REFEREN e of common Function cf(x) f(x) + g(x) $x^n (n \neq 1)$ $\frac{1}{x}$ e^x that the follow anipulated to some by disks/ W me by cylind k : The work d	CE, NO QUESTION O antiderivatives: Particular antiderivative $\frac{cF(x)}{F(x) + G(x)}$ $\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x} wing formulas may not be a suit individual problems. /washers: $T = \int_{a}^{b} \pi (R^{2} - r^{2}) dx$ of drical shells: $V = \int_{a}^{b} 2\pi r h dx$ of an object alor $W = \int_{a}^{b} e^{x} dx$	Function $sin x$ $sec^2 x$ $sec x tan x$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ upplicable inr $V = \int_{0}^{1} f(x) dx.$ opring distance	AGEParticular antiderivative $-\cos x$ $\tan x$ $\sec x$ $\sin^{-1} x$ $\tan^{-1} x$ every situation, and may n $\int_{a}^{b} 2\pi rhdy$ a a a a a a a f_{a}^{b} $2\pi rhdy$ a

1. (15 points) Consider the region bounded by the curves $x = 1 - y^2$ and $x = y^2 - 1$. This region is plotted below.

7

 $\begin{cases} \chi = (-y^2) \\ \chi = y^2 - 1 \end{cases}$

 $\chi = (-y^2)$

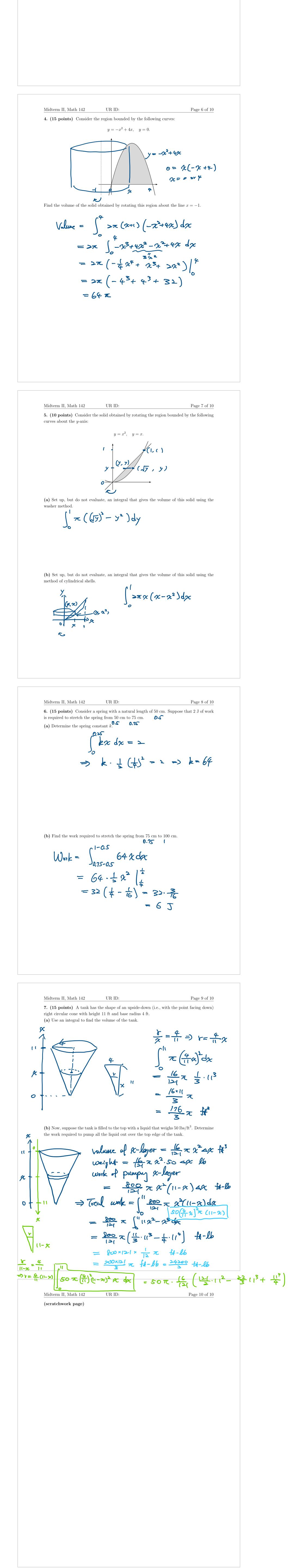
 $y^2 = 1 \Rightarrow y = \pm 1$

Page 4 of 10

-> Note: there may be multiple ways to explain your choice (a) Which variable of integration would you choose to express the area of this region as a single integral? Explain your choice. Area = $\int_{1}^{1} (1-y^2) - (y^2-1) dy$, i.e. w.r.t. y: this is because⁻¹ the region has a single left and right boundary curve, but not a single top/bottom curve (b) Find the area of the region. Area = $\int_{1}^{2} 2y^{2} = [2y - \frac{2}{3}y^{3}]_{-1}^{2}$ $\frac{1}{3}$

UR ID:

Find the area of the region bounded by the curves y = 4 and $y = x^2 - 5$.


Midterm II, Math 142

2. (10 points)

Ť	y= %	5 Y=4		
		ly=1	;²-5	ck = ≠ 3
-3 3 y=	s 2 ⁻⁵			
$A_{max} = \left(\begin{array}{c} 3 \\ \end{array} \right)$	4-62-5	-) /~		
Area = \int_{-3}^{3}	+ - (x - 5) d X		. ?
-	3 9-22	$d\chi = (9)$	スー まん	s)/ s
	· 6 - {			
C C	ۍ م م	r		, ,
Midterm II, Math 142	UR ID:			Page 5 of 10
3. (15 points)			Y T h	. y>x
Consider the region bounded	d by the curves $y = x, y = y$	0, x = 1.		
(a) The solid obtained by re			s is a: (circle o	one)
Circl	e Con	e S	phere	

(b) Using the washer method, find the volume of the solid obtained by rotating this region about the x-axis.

 $\int_{0}^{1} \pi x^{2} dx = \pi \cdot \frac{1}{3} x^{3} \Big|_{0}^{1}$ $= \frac{\pi}{3}$

