Math 142: Midterm 2

University of Rochester

November 8, 2022

Name: _			
UR ID:	 	 	

UR E-mail: _____

Section	"X" your class time
MW 9 AM	
MW 3:25 PM	

- You are allowed one page, single-sided of notes. No other resources are permitted.
- The exam questions are on pages 2-11 of this packet.
- Each part of each question is on its own page. All work you want graded for that problem should be contained entirely on that page, unless:
- If you need more space on a problem, use the **Scratch work** pages at the end of the exam, and make sure to make a note on the problem page that you are doing so.
- Do not tear off the scratch work pages.
- Copy and sign the Honor Pledge: I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: _____

Question:	1	2	3	4	5	6	Total
Points:	20	20	10	30	10	10	100

1. Consider the region R in the xy-plane bounded by the curves $x = y^2 - 4$ and y = 2 - x, shown below.

(a) (10 points) Write down (but do not evaluate) an integral formula for the area of R with respect to x.

(b) (10 points) Write down (but do not evaluate) an integral formula for the area of R with respect to y.

2. Let R be the first quadrant region bounded by the curves $y = x^2$ and $y = 2\sqrt{2x}$, shown below:

(a) (10 points) Using the **washer method**, write down (but do not evaluate) an integral for the volume of the solid obtained by revolving R about the x-axis.

(b) (10 points) Using the **washer method**, write down (but do not evaluate) an integral for the volume of the solid obtained by revolving R about the y-axis.

3. (10 points) A region R bounded by the curves y = x and $y = x^3 - 3x$ is shown below. Using the **shell method**, write down (but do not evaluate) an integral for the volume V of the solid S obtained by revolving R about the vertical line x = 3.

4. Calculate the following integrals.

(a) (10 points)
$$\int (1+x^2)^{-1} e^{\arctan x} dx$$

(b) (10 points)
$$\int_{1}^{6} 2x\sqrt{x+3} \, dx$$

(c) (10 points)
$$\int \frac{(\ln(x))^2 + 1}{x} dx$$

5. (10 points) Let $g(x) = \int_{1}^{x^{2}+1} \cos\left(t - \frac{1}{t}\right) dt$. Find g'(x).

6. (10 points) Suppose that $\int_{1}^{2} f(x) dx = 5$. Find $\int_{0}^{\pi/2} \frac{f(\sin(x) + 1)\cos(x)}{2} dx$.

Scratch work (first page) — DO NOT REMOVE

Scratch work (second page) — DO NOT REMOVE

Scratch work (third page) — DO NOT REMOVE