Math 142: Midterm 1

University of Rochester

October 4, 2022

Name: $_$	 		
UR ID:			

UR E-mail:

Section	"X" your class time				
MW 9 AM					
MW 3:25 PM					

- You are allowed one page, single-sided of notes. No other resources are permitted.
- The exam questions are on pages 2-11 of this packet.
- Each part of each question is on its own page. All work you want graded for that problem should be contained entirely on that page, unless:
- If you need more space on a problem, use the **Scratch work** pages at the end of the exam, and make sure to make a note on the problem page that you are doing so.
- Do not tear off the scratch work pages.
- Copy and sign the Honor Pledge: I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: _____

Question:	1	2	3	4	5	6	Total
Points:	30	10	15	15	15	15	100

1. Consider the function f(x) defined by

$$f(x) = \frac{x}{x^2 - 1}.$$

The first and second derivatives of f(x) are

$$f'(x) = -\frac{1+x}{(x^2-1)^2}$$
 and $f''(x) = \frac{2x(3+x)^2}{(x^2-1)^3}$.

- (a) (2 points) What is the domain of f(x)? ANSWER:
- (b) (2 points) List the x-intercepts of f(x).

ANSWER:

(c) (2 points) List the y-intercepts of f(x).

(d) (2 points) Find all the vertical asymptotes of f(x), or explain why none exist.

ANSWER:

(e) (2 points) Find all the horizontal asymptotes of f(x), or explain why they do not exist.

ANSWER:

(f) (2 points) Find all the intervals where f(x) is increasing.

ANSWER:

(g) (2 points) Find all the intervals where f(x) is decreasing.

- (h) (2 points) Find all the critical numbers of f(x), or explain why none exist. ANSWER:
- (i) (2 points) Find all the intervals where f(x) is concave up.

ANSWER:

(j) (2 points) Find all the intervals where f(x) is concave down.

ANSWER:

(k) (2 points) Find all the inflection points of f(x), or explain why none exist. ANSWER: (l) (8 points) Use your work from parts (a)-(k) to graph f(x) below. Note that you may scale the axes how you like (i.e. prioritize a good sketch over using 1 tick mark to represent 1 unit along an axis).

2. (10 points) Find the absolute minimum and maximum values of $f(x) = x^4 - 2x^2$ on the interval [-1, 2].

3. (15 points) If 1200 cm^2 of material is available to make a box with a square base and an open top, find the largest volume of the box. Make sure to completely justify your answer.

4. Compute the following indefinite integrals:

(a) (5 points)
$$\int \frac{3}{x^2} + e^x + \sec^2 x \, dx$$

ANSWER:

(b) (5 points)
$$\int \left(x + \frac{1}{x}\right) (2x+1) dx$$

(c) (5 points)
$$\int \frac{2}{1+x^2} + \frac{1+x^2}{x^2} dx$$

5. (15 points) Consider a particle on the x-axis which starts to move from the origin at t = 0, i.e. if x(t) is the function indicating the location of the particle at time t, then x(0) = 0. If the velocity of this particle at time t is given by the function $v(t) = t^2 + t + e^t$, find the location of the particle at t = 2.

6. (15 points) Find the left endpoint Riemann sum L_4 (i.e. using 4 subintervals) for the function $f(x) = \cos(x) + 1$ above the interval $[0, 2\pi]$. Simplify your answer as much as possible. A graph of f(x) is given below.

Scratch work (first page) — DO NOT REMOVE

Scratch work (second page) — DO NOT REMOVE

Scratch work (third page) — DO NOT REMOVE