Math 142: Midterm 1

University of Rochester
October 4, 2022

Name:

\qquad
UR ID: \qquad

UR E-mail:

Section	"X" your class time
MW 9 AM	
MW 3:25 PM	

- You are allowed one page, single-sided of notes. No other resources are permitted.
- The exam questions are on pages 2-11 of this packet.
- Each part of each question is on its own page. All work you want graded for that problem should be contained entirely on that page, unless:
- If you need more space on a problem, use the Scratch work pages at the end of the exam, and make sure to make a note on the problem page that you are doing so.
- Do not tear off the scratch work pages.
- Copy and sign the Honor Pledge: I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.
\qquad
\qquad
\qquad

Signature:

\qquad

Question:	1	2	3	4	5	6	Total
Points:	30	10	15	15	15	15	100

1. Consider the function $f(x)$ defined by

$$
f(x)=\frac{x}{x^{2}-1} .
$$

The first and second derivatives of $f(x)$ are

$$
f^{\prime}(x)=-\frac{1+x}{\left(x^{2}-1\right)^{2}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{2 x(3+x)^{2}}{\left(x^{2}-1\right)^{3}}
$$

(a) (2 points) What is the domain of $f(x)$?

ANSWER:
\square
(b) (2 points) List the x-intercepts of $f(x)$.

ANSWER:

\square
(c) (2 points) List the y-intercepts of $f(x)$.

ANSWER:

\square
(d) (2 points) Find all the vertical asymptotes of $f(x)$, or explain why none exist.

ANSWER:

\square
(e) (2 points) Find all the horizontal asymptotes of $f(x)$, or explain why they do not exist.

ANSWER:

\square
(f) (2 points) Find all the intervals where $f(x)$ is increasing.

ANSWER:

\square
(g) (2 points) Find all the intervals where $f(x)$ is decreasing.

ANSWER:

(h) (2 points) Find all the critical numbers of $f(x)$, or explain why none exist. ANSWER:

(i) (2 points) Find all the intervals where $f(x)$ is concave up.

ANSWER:

\square
(j) (2 points) Find all the intervals where $f(x)$ is concave down.

ANSWER:
\square
(k) (2 points) Find all the inflection points of $f(x)$, or explain why none exist. ANSWER:
\square
(l) (8 points) Use your work from parts (a)-(k) to graph $f(x)$ below. Note that you may scale the axes how you like (i.e. prioritize a good sketch over using 1 tick mark to represent 1 unit along an axis).

2. (10 points) Find the absolute minimum and maximum values of $f(x)=x^{4}-2 x^{2}$ on the interval $[-1,2]$.

ANSWER:
\square
3. (15 points) If $1200 \mathrm{~cm}^{2}$ of material is available to make a box with a square base and an open top, find the largest volume of the box. Make sure to completely justify your answer.

ANSWER:

\square
4. Compute the following indefinite integrals:
(a) (5 points) $\int \frac{3}{x^{2}}+e^{x}+\sec ^{2} x d x$

ANSWER:

(b) (5 points) $\int\left(x+\frac{1}{x}\right)(2 x+1) d x$

ANSWER:

\square
(c) $\left(5\right.$ points) $\int \frac{2}{1+x^{2}}+\frac{1+x^{2}}{x^{2}} d x$

ANSWER:

5. (15 points) Consider a particle on the x-axis which starts to move from the origin at $t=0$, i.e. if $x(t)$ is the function indicating the location of the particle at time t, then $x(0)=0$. If the velocity of this particle at time t is given by the function $v(t)=t^{2}+t+e^{t}$, find the location of the particle at $t=2$.

ANSWER:
\square
6. (15 points) Find the left endpoint Riemann sum L_{4} (i.e. using 4 subintervals) for the function $f(x)=\cos (x)+1$ above the interval $[0,2 \pi]$. Simplify your answer as much as possible. A graph of $f(x)$ is given below.

ANSWER:

\square

Scratch work (first page) - DO NOT REMOVE

Scratch work (second page) - DO NOT REMOVE

Scratch work (third page) - DO NOT REMOVE

