Math 142: Final Exam

University of Rochester
December 18, 2022

Name:

\qquad
UR ID: \qquad

UR E-mail:

Section	"X" your class time
MW 9 AM	
MW 3:25 PM	

- You are allowed one page, single-sided of notes. No other resources are permitted.
- The exam questions are on pages 2-21 of this packet. Part A consists of problems 1-6. Part B consists of problems 7-11.
- Each part of each question is on its own page. All work you want graded for that problem should be contained entirely on that page, unless:
- If you need more space on a problem, use the Scratch work pages at the end of the exam, and make sure to make a note on the problem page that you are doing so.
- Do not tear off the scratch work pages.
- Copy and sign the Honor Pledge: I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:

\qquad

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	25	10	20	15	10	20	30	20	10	30	10	200

Part A

1. Consider the following function and its derivatives:

$$
f(x)=\frac{1}{1-x^{2}} \quad f^{\prime}(x)=\frac{2 x}{\left(1-x^{2}\right)^{2}} \quad f^{\prime \prime}(x)=-\frac{2\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}} .
$$

(a) (2 points) What is the domain of $f(x)$? Write it in interval notation.

ANSWER:
\square
(b) (2 points) What are the x and y intercepts of $f(x)$ (if any)?

ANSWER:
\square
(c) (2 points) What are the horizontal and vertical asymptotes of $f(x)$ (if any)? ANSWER:
\square
(d) (3 points) On which intervals is $f(x)$ increasing, and on which intervals is $f(x)$ decreasing?
ANSWER:
\square
(e) (3 points) What are the local extrema of $f(x)$, if any?

ANSWER:
\square
(f) (3 points) What are the intervals of concavity of $f(x)$? ANSWER:
\square
(g) (3 points) What are the inflection points of $f(x)$, if any?

ANSWER:

\square
(h) (7 points) Sketch the graph of $f(x)$. You may scale the axes how you like (i.e. prioritize a good sketch over using 1 tick mark to represent 1 unit along an axis).

2. (10 points) What is the area of the largest rectangle in the first quadrant of the $x y$-plane with one corner at the origin and opposite corner on the graph of $f(x)=1-x^{2}$?

ANSWER:

\square
3. Consider a particle moving on the real line, whose acceleration as a function of time is given by $a(t)=\frac{2}{(t+1)^{3}}$ for $t \geq 0$. Moreover, assume that the initial position and velocity of the particle are given by $x(0)=0$ and $v(0)=-1$, respectively.
(a) (10 points) What is the location of the particle at time $t=1$?

ANSWER:
(b) (10 points) What is the velocity of the particle at time $t=1$?

ANSWER:

\square
4. Compute the following integrals.
(a) (5 points) $\int 2 x e^{x^{2}+1} d x$

ANSWER:
(b) (5 points) $\int t^{2} \sqrt{t-1} d t$

ANSWER:

\square
(c) (5 points) $\int \frac{2 \cos (x)}{1+\sin ^{2}(x)} d x$

ANSWER:
5. (10 points) Find the area enclosed by the graphs of $y=|x|$ and $y=2-x^{2}$.

ANSWER:

\square
6. Let R be the region in the plane above the x-axis and below the graph of $y=\sin (x)$ from $x=0$ to $x=2 \pi$.
(a) (10 points) Write down (but do not calculate) an integral expressing the volume of the solid region obtained by rotating R around the horizontal line $y=2$.

ANSWER:
\square
(b) (10 points) Write down (but do not calculate) an integral expressing the volume of the solid region obtained by rotating R around the y-axis.

ANSWER:

\square

Part B

7. Compute the following integrals.
(a) (10 points) $\int t^{2} \ln (2 t) d t$

ANSWER:
\square
(b) (10 points) $\int \sin ^{3}(x) \cos ^{2}(x) d x$

ANSWER:

\square
(c) (10 points) $\int_{0}^{1} x^{2} e^{-x} d x$

ANSWER:
8. Consider the ellipse $x^{2}+\frac{y^{2}}{4}=1$, pictured below. Let R be the first quadrant region enclosed by the ellipse and the coordinate axes.

(a) (10 points) Write the area A of R as an integral.

ANSWER:

\square
(b) (10 points) Use trigonometric substitution to compute A.

ANSWER:

\square
9. (10 points) Find $\int \frac{x^{4}}{x^{3}-2 x^{2}+x} d x$.

ANSWER:

\square
10. Determine if the following improper integrals converge or diverge. Justify your work completely, with correct limit work (no plugging in ∞ as an argument into functions!) when needed.
(a) (10 points) $\int_{1}^{\infty} e^{-x} d x$

ANSWER:
\square
(b) (10 points) $\int_{0}^{100} \frac{1}{x^{1 / 5}} d x$

ANSWER:

\square
(c) (10 points) $\int_{1}^{\infty} \frac{x^{2}}{x^{6}+\ln (x)} d x$

ANSWER:
11. (10 points) Find the length of the curve given by $y=2 x^{3 / 2}$ for $0 \leq x \leq 1$.

ANSWER:

\square

Scratch work (first page) - DO NOT REMOVE

Scratch work (second page) - DO NOT REMOVE

Scratch work (third page) - DO NOT REMOVE

