Table of common antiderivatives:

Function	Particular antiderivative	Function	Particular antiderivative
cf(x)	cF(x)	$\sin x$	$-\cos x$
f(x) + g(x)	F(x) + G(x)	$\sec^2 x$	$\tan x$
$x^n (n \neq 1)$	$\frac{x^{n+1}}{n+1}$	$\sec x \tan x$	$\sec x$
$\frac{1}{x}$	$\ln x $	$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x$
e^x	e^x	$\frac{1}{1+x^2}$	$\tan^{-1} x$

Note that the following formulas may not be applicable in every situation, and may need to be manipulated to suit individual problems.

Volume by disks/washers:

$$V = \int_{a}^{b} \pi (R^{2} - r^{2}) dx$$
 or $V = \int_{a}^{b} \pi (R^{2} - r^{2}) dy$

Volume by cylindrical shells:

$$V = \int_{a}^{b} 2\pi r h dx$$
 or $V = \int_{a}^{b} 2\pi r h dy$

Work: The work done to move an object along a line from a to b by force f(x) is

$$W = \int_{a}^{b} f(x) dx.$$

Hooke's Law: The force required to hold a spring distance x beyond its natural length is

F = kx.