Table of common antiderivatives:

Function	Particular antiderivative	Function	Particular antiderivative
$c f(x)$	$c F(x)$	$\sin x$	$-\cos x$
$f(x)+g(x)$	$F(x)+G(x)$	$\sec ^{2} x$	$\tan x$
$x^{n}(n \neq 1)$	$\frac{x^{n+1}}{n+1}$	$\sec x \tan x$	$\sec x$
$\frac{1}{x}$	$\ln \|x\|$	$\frac{1}{\sqrt{1-x^{2}}}$	$\sin ^{-1} x$
e^{x}	e^{x}	$\frac{1}{1+x^{2}}$	$\tan ^{-1} x$

Note that the following formulas may not be applicable in every situation, and may need to be manipulated to suit individual problems.

Volume by disks/washers:

$$
V=\int_{a}^{b} \pi\left(R^{2}-r^{2}\right) d x \quad \text { or } \quad V=\int_{a}^{b} \pi\left(R^{2}-r^{2}\right) d y
$$

Volume by cylindrical shells:

$$
V=\int_{a}^{b} 2 \pi r h d x \quad \text { or } \quad V=\int_{a}^{b} 2 \pi r h d y
$$

Work: The work done to move an object along a line from a to b by force $f(x)$ is

$$
W=\int_{a}^{b} f(x) d x
$$

Hooke's Law: The force required to hold a spring distance x beyond its natural length is

$$
F=k x
$$

