Basir assumption $\lim _{x \rightarrow h} f(x) \quad \lim _{x \rightarrow a} g(x)$ exist

$$
\begin{array}{lll}
f(x)=\frac{1}{x} & \lim _{x \rightarrow 0} f(x)=\infty & \lim _{x \rightarrow 0} f(x) \cdot g(x)=\lim _{x \rightarrow 0} 1=1 \\
{[0,+\infty)} & \underline{x}(x)=x & \lim _{x \rightarrow 0} g(x)=0
\end{array}
$$

(1) If f a poynomial or a rational function a in damum off

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

if f cts at $a \Leftrightarrow \lim _{x \rightarrow n} f(x)=f(a)$

$$
\begin{gathered}
\forall x \neq 1 \quad x=1 \\
f(x)=g(x) \\
g(x)=x+1 \quad g(x)=2
\end{gathered}
$$

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{(x-1)}=\lim _{x \rightarrow 1} x+1=1+1=2
$$

x approdiches tol

$$
x \neq 1 \Rightarrow x \rightarrow 1 \neq 0
$$

nhy we can cancel $x-1$

If $f(x)=g^{(x)}$ when $x \neq a$.
Then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g_{(x)}$ phovided the lientes exise

$$
g(x)= \begin{cases}x+1 & x \neq 1 \\ \pi & x=1\end{cases}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x+3)(x-9)}{x-3}=\lim _{x \rightarrow 3} x+3=6 \\
& \lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h} \\
&=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h} \\
&=\lim _{h \rightarrow 0} 6+h=6 \text { to }=6
\end{aligned}
$$

$f(x)=|x|$

$$
\begin{aligned}
& |x|= \begin{cases}x & \text { if } x \geqslant 0 \\
-x & \text { if } x<0\end{cases} \\
& \lim _{x \rightarrow 0^{+}}|x|=\lim _{x \rightarrow 0^{+}} x=0 \\
& \lim _{x \rightarrow 0^{-}}|x|=\lim _{x \rightarrow 0^{-}}-x=-0=0
\end{aligned}
$$

Left Limic $=$ Righe Limat

$$
0=0
$$

$$
\text { at } x=0
$$

$$
\lim _{x \rightarrow 0}|x| \text { exist }=0
$$

$$
f(x)=\frac{|x|}{x}
$$

Nor able to cuse quotiens

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{|x|}{x}
$$ law heve

Right side limer
Limit doesm exixt

$$
\left.\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}} \right\rvert\,=7
$$

Peft sille limite

$$
\lim _{x \rightarrow 0^{-}} \frac{\mid x)}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=\lim _{x \rightarrow 0^{-}}-1=-1
$$

$1 \neq-1 \quad$ limip doesat exar at $x \rightarrow 0$

$$
f(x)=\left\{\begin{array}{cc}
\sqrt{x-4} & x>4 \\
8-2 x & x<4
\end{array}\right.
$$

Rathe side lizsiy

$$
\begin{aligned}
\lim _{x \rightarrow 4^{+}} \sqrt{x-4} & =\sqrt{\lim _{x \rightarrow 4-4} x} \\
& =\sqrt{4-4} \\
& =\sqrt{0}=0
\end{aligned}
$$

Leti site lim

$$
\lim _{x \rightarrow 4^{-}} 8-2 x=8-2 x 4=0
$$

$$
\begin{aligned}
& 0=0 \\
& \Rightarrow \lim _{x \rightarrow 4} \operatorname{exin}
\end{aligned}
$$

$f(x) \leqslant g(x)$ When $x 1$ near a. and the cumin of f, g both exist as $x \rightarrow a$. then $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$

if $f(x) \leq g(x) \leq h(x)$ when x near a

$$
\lim _{x \rightarrow a} f(x)=\lim _{x+n} h(x)=L
$$

Then $\lim _{x \rightarrow n} g(x)=L$

Squeeze theorem
if $\quad \begin{aligned} f(x) & \leq g(x) \leq h(x) \\ \lim _{x \rightarrow a} f(x) & =\lim _{x+n} h(x)=L\end{aligned}$

$$
\begin{aligned}
& -1 \leq \sin \left(\frac{t}{x}\right) \leq 1 \\
& -x^{2} \leq x^{2} \sin \left(\frac{1}{x}\right) \leq x^{2}
\end{aligned}
$$

$$
\lim _{x \rightarrow \infty} x^{2}=0 \quad \lim _{x \rightarrow 0}-x^{2}=0
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=0 \\
& \lim _{x} x^{2} \sin \frac{1}{x}=0
\end{aligned}
$$

$f(x)$ detined somenhere near 1

$$
\begin{array}{ll}
\sqrt{x} \leq f(x) \in x^{3} \\
\lim _{x \rightarrow 1} f(x) & \lim _{x \rightarrow 1} x^{3}=1 \quad \lim _{x \rightarrow 1} \sqrt{x}=\sqrt{\lim _{x \rightarrow 1} x}=\sqrt{1} \Rightarrow
\end{array}
$$

then $\quad \lim _{x \rightarrow 1} x^{3}=\lim _{x \rightarrow 1} \sqrt{x} \Rightarrow \quad \lim _{x \rightarrow 1} f(x)=1$

$$
\begin{aligned}
& x \leq f(x) \leq x^{2} \\
& \lim _{x \rightarrow 0} x \leq \lim _{x \rightarrow 0} f(x) \leq \lim _{x \rightarrow 0} x^{2} \\
& 0 \leq \lim _{x \rightarrow 0} f(x) \leq 0 \\
& \lim _{x \rightarrow 0} f(x)=0
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{\sin x+1}{\cos x+1}=\frac{\lim _{x \rightarrow 0} \sin x+1}{\lim \cos x+1}=\frac{0+1}{1+1}
$$

Continuity of a function
A function f is cts at on umber a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

- fla) is defined ($a \cdot 3$ in domain of f)
- ($\lim _{x \rightarrow a} f(x)$ exist
- $\lim _{x \rightarrow a} f(x)=f(a)$

Small change in $x \Rightarrow$ small change in $f(r)$

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x) \\
& \text { at } x=2 . \quad \lim _{x \rightarrow 2} f(x)
\end{aligned}
$$

fl) not defined
(a) $f(x)=\frac{x^{2}-x-2}{x-2}=\frac{(x-2)(x+1)}{x-2} \underbrace{}_{x \rightarrow a} \quad(-2)$ nor definad $x-2$
/lets
function f is cts from right at number a

A function is cts on an interval of it is ers at evorypoht in the
 interval

$$
f(x)=1-\sqrt{1-x^{2}} \text { wis this } 1+s \quad \lim _{x \rightarrow-1^{+}} f(x)=f(-1)
$$

$$
\begin{aligned}
-1<a<1 \quad \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow 4}\left(1-\sqrt{1-x^{2}}\right) \quad \lim _{x \rightarrow 1^{-}} 1-\sqrt{1-x^{2}} & =1-\sqrt{1-1} \\
= & =1-f(a) \\
& =1-\lim _{x \rightarrow a} \sqrt{1-x^{2}} \\
& =1-\sqrt{\lim _{x \rightarrow 4}\left(1-x^{2}\right)}=1-\sqrt{1-a^{2}}=f(a)
\end{aligned}
$$

$f(a)=1-\sqrt{1-a^{2}} \quad f B$ ats at a if $<a<1$
$\left(\lim _{x \rightarrow a} f(x)=f(a), \quad \operatorname{loven} g(x)=g(a)\right)$
Theorem if $f, g c+s$ ata $c i s$ aconstant then following functions
(1) fig cts at a.
(4) $f g$
(8) $f-g$
(B) $c f$

$$
\left\{\begin{aligned}
\lim _{x \rightarrow a}(f+g) & =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& =f(a)+g(a):=(f+g)(a)
\end{aligned}\right.
$$

f, g ues on meeruna I
prevous functous follows [öntinanity on 7
$p(x)$ podynomial $\lim _{x \rightarrow 4} p(x)=p(a)$ divert Suldstitution property $p(x)$ is ots at a.
Dolynomial ots everyuhere, that 13 , $c+s$ on $\mathbb{R}:(-\infty, \infty)$ $Q(x)=\frac{p(x)}{a(x)}$ if $a \in \operatorname{Pom} Q(x) \quad \lim _{x \rightarrow n} Q(x)=Q(a) \quad Q(x)$ is ats ara
$\theta(x)$ is cts on $\operatorname{Dom}(\theta(x))$

Theorem 7. following type of function are cots at every number in their domain
polynomial Rational function root function trig function, ines ting functions (by oheckny graph exponential function (made to be (+5) logarithm of function)

$$
\begin{aligned}
& \tan x=\frac{\sin x}{\cos x} \text { a make } \cos a 70 \Rightarrow \text { able to } \\
& \lim _{x \rightarrow a} \tan x=\lim _{x \rightarrow a} \sin x=\sin a \\
& \text { use quotient } \\
& \text { an } a n(a)
\end{aligned}
$$

(immense of cts function)

Find $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-8 x}=f(-2)=\frac{-1}{4}$
previour methal
-2 in dgmain of $f(x)$
we can substinule $x=-2$
but $f(x)$ is cts on its domaing
hence ctb on -2
by detinition of $1+3$

$$
2+\cos \pi=2+(-1)=1 \neq 0
$$

$$
\begin{array}{ll}
\lim _{x \rightarrow \pi} \frac{\sin x}{2+\cos x}=\frac{\sin \pi}{2+\cos \pi} & f(x)=\sin x \text { cts at } \pi \\
=\frac{0}{-1}=0 & 91 x 7=2+\cos x-13 \text { cts nLt } \\
& \frac{t}{9} \text { is }+t b \text { at } \pi
\end{array}
$$

