$$
\text { class } 9.06103
$$

$$
\begin{aligned}
m_{p q} & =\frac{x^{2}-1}{x-1} \\
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} & =\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{x-1}=\lim _{x \rightarrow 1} x+1
\end{aligned}=2
$$

Depinition The tangene line to the curve $y=f(x)$ at poirt $(a, f(a))$ is the liwe throngh P. with slope

$$
\begin{equation*}
m=\lim _{x \rightarrow n} \frac{f(x)-f(n)}{x-n} \tag{1}
\end{equation*}
$$

$$
\|
$$

$$
\begin{equation*}
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(n)}{h} \tag{2}
\end{equation*}
$$

$$
f(x)=\frac{3}{x}
$$

$$
y-1=-\frac{1}{3}(x-3)
$$

$$
\begin{array}{rlr}
m & =\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} & =\lim _{h \rightarrow 0} \frac{-1}{3+h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3}{3+h}-1}{h}=\lim _{h \rightarrow 0} \frac{3}{3+h}-\frac{3+h}{3+h} & \lim _{h \rightarrow 0} \frac{-h}{3+h} \\
& =\frac{-1}{3}
\end{array}
$$

0450 mhight

$$
f(t)=4.9 t^{2}
$$

find the instuntaneous veloity atter 5 s.
befone, we find average velocoy
by compution the displacemare prom $(49,5.1)$ divade by 0.2 (timec)

$$
(4.99 .501)
$$

$0.02 \ldots$

$$
\begin{aligned}
V & =\lim _{h \rightarrow 0} \frac{49(5+h)^{2}-4.9(5)^{2}}{h}=\lim _{175} \frac{49 t^{2}-4.95^{2}}{t-5} \\
& =\lim _{h \rightarrow 0} \frac{4.9\left(5^{2}+2 \times 5 \cdot h+h^{2}\right)-49.5^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{4.9 \times 5^{2}+4.9 \times 2 \times 5 \times h+4.9 \times h^{2}-4.9 \times 5}{h} \\
& =\lim _{h \rightarrow 0} \frac{4.9 \times 2 \times 5 \times h-4.9 \cdot h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 4.9 \times 10-4.9 \times h \\
& =49 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Instuntanenous velocity of an object with position function $f(t)$ at time $t=a \cdot B V(a)=\lim _{h \rightarrow 1} \frac{f(a+h)-f(a)}{2}$

befinizion the derivative of a function f at a, denoted by $f^{\prime}(a)$

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\end{aligned}
$$

tangent line pusstbrough $(2,-3)$
$f(x)=\frac{x^{2}-8 x+9}{2}$, at number (2. $y-(-3)=-4(x-2)$

$$
\begin{aligned}
f(2)=2^{2}-8 \cdot 2+9=4-16+9 & =-3 \\
\lim _{h \rightarrow 0} \frac{f(2+h)-(-3)}{h}=\lim _{h \rightarrow 0} \frac{(2+h)^{2}-8(2+h)+9+3}{h} & =\lim _{n \rightarrow 0} \frac{4+4 h+h^{2}-16-8 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}-45}{h^{2}}
\end{aligned}
$$

$f(x)=x^{2}-8 x+9$. find derivative $x=9$

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(a+h)^{2}-8(a+h)+9-\left(a^{2}-8 a+9\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{2}+2 a h+h^{2}-8 a-8 h+9-a^{2}+8 a-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+2 a h-8 h}{h} \\
& =\lim _{h \rightarrow 0} h+2 a-8=2 a-8
\end{aligned}
$$

If we let $a=2 \quad 2 \times 2-8=-4$

$$
\underbrace{f}_{\substack{ \\f^{\prime}(a)=2 a-8}} \rightarrow \text { function }
$$

$$
\frac{1}{a}-\frac{1}{b}=\frac{b a}{a b}
$$

$f(x)=\frac{1}{\sqrt{x}}$ dervarine ar number $a>0$

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f a)}{x-a}=\lim _{x \rightarrow a} \frac{\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{a}}}{x-a}=\lim _{x \rightarrow a} \frac{\sqrt{a}-\sqrt{x}}{\sqrt{x} \sqrt{a}} \\
& x-a \\
&= \lim _{x \rightarrow 2} \frac{\sqrt{a}-\sqrt{x}}{(x-a) \sqrt{x a}}=\lim _{x \rightarrow a} \frac{\sqrt{a}-\sqrt{x}}{(\sqrt{x}-\sqrt{a})(\sqrt{x}+\sqrt{a}) \sqrt{x a}} \\
&=\lim _{x \rightarrow a} \frac{-1}{(\sqrt{x}+\sqrt{a}) \sqrt{x a}}=\frac{-1}{a \in \operatorname{lom} a g n} \\
&= \frac{-1}{a \cdot 2 \sqrt{a}}=\frac{-1}{2 a^{3} / 2}
\end{aligned}
$$

$f(x)$ at point (a,f(a)) hans slope $f^{\prime}(a)$

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

equation for tangene Cine
if x change from x_{1} to x_{2}

$$
\begin{aligned}
y=f(\Delta) & \text { chauge of } x \quad x_{2}-x_{1}=\Delta x \\
& \text { chacce of } y=f\left(x_{2}\right)-f\left(x_{1}\right)=\Delta y \\
& \frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
\end{aligned}
$$

Mstantaneous rate of chayg

$$
\begin{aligned}
=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} & =\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{0}\right)}{x_{2}-x_{1}} \\
& =f^{\prime}\left(x_{1}\right)
\end{aligned}
$$

The dirivarive $f^{\prime}(a)$ is instantaneass rale of donefe of $\left.y=H x\right)$ with resplet to x wan $x=q$

$f(t)$ posichon funtion for a. we ablu to thad $f^{\prime}(a)$ $f^{\prime}(a)=v(a)$ is velosien of the partide. speed of panticle $=\left|f^{\prime}(a)\right|$

$$
f(a)=\eta(a) \quad f^{\prime}(x) \log (x)
$$

$g(x) 13$ funtios

$X \longmapsto f^{\prime}(x) \quad f^{\prime}$ is a function
derivative of f
$x f^{\prime}(x) 13$ the sloque of eanquare line of $f(x)$
Domar for $f^{\prime}(x)=\left\{x \mid f^{\prime}(x)\right.$ exise)

$$
a t(x, f(x))
$$

$\left(\begin{array}{cc}0 \text { max ex } \\ x^{3}-x^{1} & \rightarrow 3 x^{2}-1\end{array}\right.$

$$
\begin{aligned}
& f(x)=x^{3}-x \\
& \lim _{0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f^{\prime}(x)}{}=3 x^{2} 1 \\
&=\lim _{h \rightarrow 0} \frac{\left.x^{3}+3 x^{2} h+3\right)^{3}-(x+h)-\left(x^{2}+h^{2}-x\right)-x-h-x^{3}+x}{h} \\
&=\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}-1=3 x^{2}-1
\end{aligned}
$$

$$
f(x)=x^{3}-x
$$

$[0,+\infty)$

$$
\begin{aligned}
& f(x)=\sqrt{x}=x^{\frac{1}{2}} \text { verbfy } \\
& f^{\prime}(x)=\frac{1}{2} x^{\frac{1}{2}-1}=\frac{1}{2} x^{-\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+r}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}
$$

$$
\frac{1}{2} x=\frac{1}{2}=\frac{1}{2}
$$

pomain $f^{\prime}(x) \subset$ Pomare of

$$
\begin{aligned}
& f(x)=\frac{1-x}{2+x} \quad \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1-(x+h)}{2+(x+h)}-\frac{1-x}{2+x}}{4} \\
& =\lim _{h \rightarrow \infty} \frac{(1-(x+h))(2+x)-(1-x)(2+x+h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(1-x-h)_{2}+x(1-x-h)-(1-x)_{2}-(1-x) \cdot x-(1-x) h}{(2+x+h)(2+x)}}{h} \\
& -(1-x) h \\
& =\lim _{h \rightarrow 0} \frac{(1-x) \cdot 2-h \cdot 2+x(1-x)-x h-(1-x) 2-(1-x) \cdot x}{(2+x+h)(2+x) h} \\
& =\lim _{h \rightarrow 0} \frac{-2-x-(1-x)}{(2+x+4)(2+x)} \\
& =\frac{-2-1}{(2+x)(2+x)}=\frac{-3}{(2+x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(\sqrt{2} x^{2}\right)=2 x \\
& \int_{d x}^{d}\left(x^{3}-x\right)=3 x^{2}-1 \quad \frac{d y}{d x} \lim _{8 x \rightarrow 0} \frac{\Delta y}{\Delta x} \\
& y=8(\infty) \quad x=a \\
& \left.\frac{d y}{a x}\right|^{4} \text { evalunecal }
\end{aligned}
$$

A function f is differemsiable at a if $f^{\prime}(a)$ erivt Itis ditenentable on angenintocal (a, b) or $(a,+b)^{o r}(-\infty, a)^{\text {or }}(-\infty, a)$ if it is difereniable at ecomy number in the interify
$f(x)=(x)$ where difterentiable where $f^{\prime}(a)$ exist? $x+h>0$
(1) $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}$
$S_{\text {mox }}>0$

$$
=1
$$

h cunbe chosen small enough si $x+h>0$
$x<0 \quad \lim _{\substack{\text { wo } \\ \\ \operatorname{lox}^{2} h \text { smanl evough }}} \frac{f(x+h)-(f x)}{h}=\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h}$
$x<0 \Rightarrow x+h<0$

$$
=\lim _{h \rightarrow 0} \frac{-h}{h}=-1
$$

$$
\begin{aligned}
& x \rightarrow 0 \quad h>0 \\
& \lim _{h \rightarrow 0^{+}} \frac{f(0+h)-t(0)}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{h-0}{h}=1
\end{aligned}
$$

$\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}$

$$
\begin{aligned}
& -1 \neq 1 \quad \text { whon } x=0 \\
& f^{\prime}(0) \\
& \text { DNE } \\
& \text { Dommin por } f^{\prime}(x)=(-\infty, \infty)-\sqrt{3}
\end{aligned}
$$

proof: Assume fir differentiable at a

$$
\begin{gathered}
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \text { exist } \\
\lim _{x \rightarrow a} x-a=0 \quad x^{\prime} j t \\
\lim _{x \rightarrow a} f(x) \quad \lim _{x \rightarrow a} g(x) \Rightarrow \lim _{x \rightarrow a} f g=\lim f \operatorname{ling} \\
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot(x-a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \lim _{x \rightarrow a} x-a \\
\lim _{x \rightarrow n} f(x)-f(a)=f^{\prime}(a) \cdot 0=0
\end{gathered}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow a}(f(x)-f(x)) \Rightarrow f(x) \text { constant } \\
& \begin{aligned}
\left.\lim _{x \rightarrow a} f(a)\right)+0 & =\lim _{x \rightarrow a} f(a)\left(\lim _{x \rightarrow a}(f(x)-f(a))\right) \\
& \lim _{x \rightarrow n} f(a)+f(x)-f(a)
\end{aligned} \\
& f(a)=\lim _{x \rightarrow n} f(x)
\end{aligned}
$$

definition
of Cts

(2)

ath derivatio

$f^{(4)} f^{(n)}$

$$
\begin{aligned}
& f(x)=x^{3}-x \quad\left(f^{\prime}=3 x^{2}-1\right) \\
& f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime \prime}(x)=6 x}{h(x+h)^{2}-1-\left(3 x^{2}-1\right)} \\
&=\lim _{h \rightarrow 0} \frac{3\left(x^{2}+2 x h+h^{2}\right)-3 x^{2}}{h}=\lim _{h \rightarrow 0} 6 x+3 h \\
& h(x)=6 \\
&=6 x
\end{aligned}
$$

