06124
Incereniy IDecrensy test $f(x)$ is increasing at that ρ mit

local max
local maxima
coed mus

 concave upward

$$
\Leftrightarrow f^{\prime \prime}(x)>0
$$

Conguvity test:

a) if $f^{\prime \prime}(x)>0$ on
maromal Is then $f i s$ concave up ound on I
a) concane upward, curve above tangens ime

b) if $f^{\prime \prime}(x) c o$ on intelval I. then graph of f is concare downnard on 1
b) concare downward: curre below tangent line

point t if tungenc ive exise, curve croses its tangent live at inflectors points

Define. A point P ma curve $y=H(x)$ is called inflection pt if is (th there and the curve change from concave up rand to concave donned or from concave downcoand to concave upward. atp.

Exampu 5 :
skean graph of turuever by given condition
(1) $\frac{f^{\prime}(x)>0}{f(x) \text { increasing }}$ o,$\frac{f^{\prime}(x)<0 \text { on }(1, \infty)}{f(x) \text { de versing }}$
(2) $f^{\prime \prime}(x)>0$ on $(-\infty,-2) \&(2,+\infty)$
$f^{\prime \prime}(x)<0$ on $(-2,2)$ concave
up
(2) $\lim _{x \rightarrow-\infty} f(x)=-2$
concave dom
$x \rightarrow-\infty$

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

second devivatue test
Suppose $f^{\prime \prime}$ is ats neal a
a) $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$ f has local mon
b) $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$ f has lo al max

$f^{\prime}(x)$ Maces $\Leftrightarrow f^{\prime \prime}(x)<0$ when $f^{\prime \prime}(c)$ doers exile, test fail apply fibs derivative test!!
$f\left(x^{x}=\left(x^{4}\right)-4 \times 3\right.$

$$
f(x)=4 x^{3}-12 x^{2}
$$

$$
f(x)=0=4 x^{3}-12 x^{2}=x^{2}(4 x-12)
$$

$$
x_{1}=0 \quad x_{2}=3
$$

$f^{\prime \prime}(x)=12 x^{2}-24 x$, refined every where CTs eveynhere

$$
\begin{aligned}
& =12 x(x-2) \quad \begin{array}{l}
x=0 \\
\text { inlletitm }
\end{array} \text { wher } x<0 \quad f^{4}(x)>0 \\
& 2>x>0 \quad f^{\prime \prime}(x)<0
\end{aligned}
$$

ialle fitim $2>x>0 \quad f^{\prime \prime}(x)<0$
appry 2ind devimine text($x=2$) $x>2$

$$
\begin{aligned}
f^{\prime \prime}(0) & =12 \times 0-24 \times 0=0 \\
f^{\prime \prime}(3) & =12 \times 9-24 \times 3 \\
& =108-72=36
\end{aligned}
$$

appry f int derian teve

$$
\begin{aligned}
& 3>x>0 .-f^{\prime}(x)<0 \\
& f^{\prime}(x)=4 x^{2}(x-3) \\
& x<0 \sim f^{(x)}<0 \operatorname{sing} \text { of } \\
& =4 x^{2}(x-3) \\
& \text { doen } 4 \\
& \text { champ1, } \\
& 0.1 \text { ne } \\
& \text { cocul max/mh }
\end{aligned}
$$

$$
f(x)=x^{3}-3 x^{2}+5 \quad \begin{array}{ll}
x+\infty & f(x) \rightarrow+\infty \\
x \rightarrow-\infty & f(x) \rightarrow-\infty
\end{array}
$$

(1) Find intekny when f is increarsy/decreariy $F(x)$ increagy on $(-\infty, 0)(2,+\infty)$
denerang in $(0,2$
(2) Tred.. wheve fion ane up or down $x>1$ up $x<1$ dowim
(3) Find intlection point of f
11^{3} infleita prion
(4) Skeach graph
$\begin{aligned} & f^{\prime}(x)=3 x^{2}-6 x=3 x(x-2) \text {, nureary } \\ & x=0 \quad x=2 \quad f^{\prime}(x)>0 \quad f^{\prime}(x)<0 \quad f^{\prime}(x)>0\end{aligned}$ $x=0 \quad x=2 \frac{f^{\prime}(x)>0 \quad f^{\prime}(x)<0}{1} f^{\prime}(x)>0$

$$
\begin{aligned}
f(x) & =\begin{array}{l}
x \rightarrow+\infty \\
x \rightarrow-\infty \\
x \rightarrow-6 x^{2}-135 x
\end{array} \quad f(x) \rightarrow-\infty \\
f^{\prime}(x) & =\frac{3 x^{2}-12 x-135}{\left.f^{2}-4 x-45\right)} \\
& =3\left(x^{2}-4 x-45\right. \\
& =3(x-9)(x+5)
\end{aligned}
$$

$f(x)$, inuenoy max decrensy min, heresry

$$
\begin{aligned}
& f(x)=x^{\frac{2}{3}}(6-x)^{\frac{1}{3}} \\
& f^{\prime}(x)=\frac{2}{3} x^{-\frac{1}{3}}(6-x)^{\frac{2}{3}}-x^{\frac{2}{3}} \frac{1}{3}(6-x)^{-\frac{2}{3}} \\
& =\frac{2(6-x)^{\frac{1}{3}}}{3 x^{\frac{1}{3}}}-\frac{x^{\frac{2}{3}}}{3(6-x)^{\frac{2}{3}}} \\
& =\frac{2(6-x)^{\frac{2}{3}(6-x)^{\frac{2}{3}}-x^{\frac{2}{3}} x^{\frac{1}{3}}}}{3 x^{\frac{1}{3}}(6-x)^{\frac{2}{3}}}=\frac{4-x}{x^{\frac{1}{3}}(6-x)^{\frac{2}{3}}} \\
& =\frac{2(6-x)-x}{3 x^{\frac{1}{3}}(6-x)^{\frac{2}{3}}}=\frac{\frac{12-2 x}{3 x^{\frac{1}{3}(6-x)^{\frac{2}{3}}}} \quad \text { when } x=4 f^{\prime}(4)=0}{x=0, x=6, f^{\prime}(x) D N E} \\
& f^{\prime \prime}(x)=\frac{-8}{x^{\frac{4}{3}}(6-x) \frac{5}{3}} \quad \text { } x=0
\end{aligned}
$$

$f(x)$ decreary, inuonsy decreny derenery

$$
f^{\prime}(x)-\min _{\text {max }}^{0}+\underset{\text { m }}{4}-
$$

$$
\begin{array}{ll}
x \rightarrow-\infty & f(x) \rightarrow+\infty \\
x \rightarrow+\infty & f(x) \rightarrow-\infty
\end{array}
$$

$$
\begin{aligned}
& f(x)=x^{\frac{2}{3}}(6-x)^{\frac{1}{3}} \\
& f^{\prime}(x)=\frac{4-x}{x^{\frac{1}{3}}(6-x)^{\frac{2}{3}}}
\end{aligned}
$$

$$
f^{\prime \prime}(x)=\frac{-8}{x^{\frac{4}{3}}(6-x)^{\frac{5}{3}}}
$$

$$
\begin{aligned}
& f(x)=e^{\frac{1}{x}} \text { Dommn }: \mathbb{R}-\{0\} \\
& \lim _{x \rightarrow 0}+e^{\frac{1}{x}}=e^{\lim _{x \rightarrow+} m^{\frac{1}{x}}}=e^{+\infty}=+\infty \\
& \lim _{x \rightarrow 0^{-}} e^{\frac{1}{x}}=e^{\lim _{x \rightarrow \infty} \frac{1}{x}}=e^{-\infty}=\frac{1}{e^{\infty}}=0 \\
& \lim _{x \rightarrow 10} e^{\frac{1}{x}}=e^{\lim _{x \rightarrow \infty} \frac{x}{x}}=e^{0}=1 \\
& \lim _{x \rightarrow-\infty} e^{\frac{1}{x}}=1 \\
& f^{\prime}(x)=e^{\left(\frac{1}{x}\right)} \cdot \frac{-1}{x^{2}}=\frac{-e^{\frac{1}{x}}}{x^{2}} \quad f^{\prime \prime}(x)=\frac{e^{\frac{1}{x}}(2 x+1)}{x^{4}}
\end{aligned}
$$

LHopital's rule

$$
\lim _{x \rightarrow k} \frac{f(x)}{g(x)}=\lim f(x)_{\lim (g \mid x)}^{\infty}
$$

When denomivary $=0$, can 4 apply tan quotient
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ law.
$1 \longdiv { T }$ reamed before (by Jeometin m
Nat able to use quotient law $\frac{0}{0}$
$\lim \frac{f(x)}{g} \operatorname{both} f(x) \rightarrow 0 \quad g(x) \rightarrow 0$
$\lim _{x \rightarrow n} \bar{g}(x) \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1 \quad$ as $x \rightarrow a$ called an milexerminout tom of type $\frac{0}{0}$

$$
\begin{aligned}
& \text { bins } f(x) \rightarrow \infty \quad g(x) \rightarrow \infty(-\infty) \\
& \left.\lim _{y \rightarrow \infty}\left(\frac{x^{2}-1}{2 x^{2}+t}\right)=\lim _{x \rightarrow 1 \infty}\left(\frac{1-\frac{1}{x^{2}}}{2+\frac{1}{x^{2}}}\right)^{-\infty}\right) \frac{1}{2} \text { of }+y p e \frac{\infty}{\infty}
\end{aligned}
$$

Suppose + and g one diftecentizble. $g^{\prime}(x) \neq 0$ on an open interval $I \rightarrow a$.

$$
\lim _{x \rightarrow u} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0 \quad\left(\frac{0}{6}\right)
$$

or $\lim _{x \rightarrow n} f(x)= \pm \infty$ and $\lim _{x \rightarrow n} g(x)= \pm \infty\left(\frac{\infty}{\infty}\right)$

$$
\lim _{x \rightarrow n} \frac{f^{(x)}}{g(x)}=\lim _{x \rightarrow n} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\cos x}{1}=\cos 0=1 \\
& \lim _{x \rightarrow \infty} \frac{x^{2}-1}{2 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{2 x}{4 x}=\lim _{x \rightarrow \infty} \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{\ln x}{x-1}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=\lim _{x \rightarrow \infty} \frac{1}{x}=0\right. \\
& \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2} \\
& \text { LHopital's } \\
& =+\infty \\
& \left(\frac{0}{0}\right) \\
& \lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\sec ^{2} x-1}{3 x^{2}}=\frac{\lim _{x \rightarrow 0} 2(\sec x) \sec x}{6 x} \\
& \tan x \rightarrow 0 \text { as } x \rightarrow 0 \quad \sec ^{2} x=\frac{1}{\cos ^{2} x} \rightarrow 1 \\
& x \rightarrow 0 \quad \text { as } x \times 0 \\
& =\lim _{x \rightarrow 0} \frac{2 \sec x+\operatorname{con} x}{6 x}=\frac{1}{3} \lim _{x \rightarrow 5 \rightarrow 1} \sec x^{2} \operatorname{lm} \frac{\tan x}{x} \\
& =\frac{1}{3}
\end{aligned}
$$

