6.117
$y=f(x) \frac{d y}{d x}$ is rate of change of y vespent of x

$$
\frac{d y}{d x}=\lim _{x_{2} \rightarrow-x_{1}} \frac{\left.f\left(x_{2}\right)-f_{1} x_{1}\right)}{x_{2}-x_{1} \uparrow}
$$

$x_{2} \neq x_{1}$ average rate of charge of y resperto x $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$ slope of live pusiong through

$$
\left.\left(x_{2}, f\left(x_{2}\right)\right)\right) \quad\left(x_{1}, f\left(x_{1}\right)\right)
$$

If we let $x_{2} \rightarrow x_{1} \quad \Delta x_{\rightarrow 0}$.
$f^{\prime}\left(x_{1}\right)$ ingtaniane ous rate of changl of y verpers x / clope of tamentine at $p\left(x_{1}, f(x)\right)$)
$S=f(t)$ posision funition of a pareecle moving IA stacight ine

$\frac{\Delta s}{\Delta t}<$ avernge veloliry over Δt

$$
\begin{aligned}
& \Delta t \rightarrow 0 \quad v=\frac{d s}{d t} \text { velocity } \\
& a=\frac{d v}{d t}=s^{\prime \prime}(t) \text { acceleraction. }
\end{aligned}
$$

Exumple $S=f(t)=t^{3}-b t^{2}+9 t$
when partich at rest?

$$
V=0=3 t^{2}-12 t+9
$$

$$
V(t)=\frac{d s}{d t}=3 t^{2}-12 t+9 \quad 3\left(t^{2}-4 t+3\right)=0
$$

$$
\text { when t=2 } \quad V(2)=3 \times 2^{2}-12 x+9
$$

When is pioroter (posrive $=3 \times 4-12 \times 2+5$ moing forward? divection) $=-3$

$$
\begin{aligned}
& \Rightarrow V>0 \quad 3(t-3)(t-1)>0 \quad\left\{\begin{array}{l}
t>3 \\
t>1
\end{array} \Rightarrow t>3\right. \\
& \left\{\begin{array}{l}
t-3<0 \\
t-1<0
\end{array} \Rightarrow t<1\right. \text { - more fornard } \\
& f(0)=0 \quad \frac{f(1)=1-6+9=4}{4} 20,10-7 \\
& f(3)=3^{3}-6 \times 3^{2}+9 \times 3 \\
& =27-54+27=0 \\
& f(5)=5^{3}-6 \times 5^{2}+945=20
\end{aligned}
$$

$$
f(t)=t^{3}-6 t^{2}+9 t
$$

The distemne traneled by paricle dury tirst 5 s . Flores
when $1<t<2$

$$
a(t)<0 \quad v+(t)<0
$$

$$
\begin{aligned}
& \left.a\right|_{A}=6 \times 4^{0}-12=12 \\
& V(t): \text { when }+1 \text { ar } 3: V(t)=0
\end{aligned}
$$

$$
\text { chen }+73 \quad a(t)
$$

when $t>3$ or $t<1: V(t)>0$

$$
\text { When }[<l<3: V(P)<0
$$

\checkmark is porrte then when $a>0$ when $v<0 / v i s$ change sernen

$$
\lim _{t_{2 \rightarrow 1} \rightarrow \frac{V\left(t_{2}\right)-v\left(t_{1}\right)}{t_{2}-t_{1}}}^{\uparrow \text { alwwhs }}=a\left(t_{1}\right)
$$

paricless sped up $a(t)=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}<0$

$$
t_{-3 \rightarrow-5 k}^{\substack{s p^{m}}}
$$

When paride so speed up. $v(-1)$ and $a t)$ have sunw

$$
\begin{aligned}
& \frac{|f(1)-f(0)|}{\text { Tfornad. }}+\frac{|f(3)-f(1)|}{\text { Tbuikward }}+\frac{(f(5)-f(3))}{T} \\
& f(1)=4 \\
& f(3)=0 \\
& f(5)=20 \\
& =4+4+20=28 \\
& \left(v(t)=3 t^{2}-12 t+9 \quad a(a t)=\frac{d v}{\pi}=(x-12\right.
\end{aligned}
$$

rod

thevebove we have function $m(x)$ nepal to length x

$$
\frac{m\left(x_{1}\right)-m\left(x_{2}\right)}{x_{1}-x_{v}}=\frac{\Delta m}{\Delta x} \Delta x \rightarrow 0 \quad \rho=\frac{d_{m}}{d x}
$$

Wheur density ρ the limit of avenge density on s $\Delta x \rightarrow 0$
tate of derange of mas respect tox

$$
m=f(x)=\sqrt{x} \quad \rho=\frac{d m}{d x}=\frac{1}{2 \sqrt{x}} \quad \rho(1)=\frac{1}{2 \sqrt{1}}=\frac{1}{2}
$$

$$
\begin{aligned}
a A+b B & \rightarrow c C+d D \\
-\frac{1}{a} \frac{d[a]}{d t} & =-\frac{1}{b} \frac{d[B]}{d t}=\frac{1}{c} \frac{d[c]}{d t}=\frac{1}{d} \frac{d[D)}{d v}
\end{aligned}
$$

$h=f(t)$ awimul population

$$
\begin{gathered}
\Delta n=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}} \quad \frac{\Delta n}{s_{t}}=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}} \Delta t \rightarrow 0 \\
\text { grow+h raw }=\frac{d h}{d t}
\end{gathered}
$$

$$
\begin{array}{ll}
f(0)=n_{0} \cdot & f(1)=2 f(0)=2 n_{0} \\
\quad f(2)=2 f(1)=2^{2}\left(n_{0}\right) \\
3 & f(t)=2^{+} n_{0}
\end{array}
$$

$$
\begin{aligned}
& f(3)=2^{3}\left(n_{0}\right) \cdots \quad \frac{f(t)=2^{t} n_{0}}{\frac{d f}{d t}=\ln 2 \cdot 2^{t} \cdot n} \\
& \frac{d f}{d t}=\ln 2 \cdot 2^{4} \cdot n_{0} \\
& =16 \ln 2 n \text {. }
\end{aligned}
$$

3 clothes 5 cloth.
$C(X) \quad x: s \in$ of the item we produce

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta c}{\Delta x}=\frac{d c}{d x}
$$

(Δx is small compare $+n$)

$$
\begin{aligned}
& C^{\prime}(n) \approx \Delta C=C(n+1)-C(n) \\
& C(x)=10,000+5 x+0.01 x^{2} \\
& C^{\prime}(x)=5+0.02 x \quad 500 \text { item } \\
& \frac{C^{\prime}(500)}{T}=5+0.02 \times 500 \\
& =5+10=15 \text { liven } \\
& \approx[[501]-C[500]=15.01
\end{aligned}
$$

ladder lofelong seltagainst erich wall

bottom of ladder slides away from wall $\mathrm{Nt} 4 \mathrm{H} / \mathrm{S}$ How face is the top of the ladder sliding down the wall when bottoms of ladder is 6 feet from
x is tunvition of $x(t)$ you function of es $y(t)$ wall
take (uplizit derivative respear to t

$$
\begin{aligned}
\frac{d\left(x^{2}+y^{2}\right)}{d t}=\frac{d(100)}{d t}=0 \\
2 x \cdot \frac{d x}{d t}+2 y \frac{d y}{d t}=0
\end{aligned}\left\{\begin{array}{l}
\frac{d x}{d t}=4 \\
x=6 \\
\frac{2 \times 6 \times 4}{48}+2 \times 8 \cdot \frac{d y}{d t}=0 \\
\frac{d y}{d t}=\frac{-48}{2 \times 8}=\frac{-48}{16}=-3 \\
=
\end{array}\right.
$$

\angle spheer volurne $V=\frac{4}{3} \pi r^{3}$

$$
\frac{d V}{d t}=100
$$

How fat 13 rodius of
air
bulloon increasing when $d=50$
$\frac{d r}{d t} ? \quad r=25$

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{d v}{d r}+\frac{d r}{d t} \\
& \frac{d v}{d t}=4 \pi r^{2} \cdot \frac{d r}{d t} \quad \frac{d r}{d t}=\frac{1}{25 \pi} \\
& 100=4 \cdot \pi \times 25^{2} \cdot \frac{d r}{d z} \\
& 160=2500 \pi \frac{d r}{d t}
\end{aligned}
$$

(1) Reed the problem
(2) Prow adingram if possible
(1) Assign cymbol to all quantivies that ave fornction of time
(4) Expless the gren information by denizaties
(5) Write equarion that selates the various quantities of the problens
(D) Uing chmin ruve to ditteventiser Loth site nespere so t
(7) Subsetute

It untaron rate

hater has keen pumped into the tank 4 m at a rate $2 \mathrm{~m}^{3} / \mathrm{min}$

Find the rate where the water level is rising when water is

$$
\begin{aligned}
& 3 \text { meter does } \\
& \frac{d V}{d t}=2 \quad 3 \text { meter does } \quad \frac{d h}{\frac{d}{d t}} \text { when }(h=3 \\
& V=\frac{1}{6} \pi r^{2} h \quad \frac{h}{r}=\frac{4}{v} \quad r=\frac{h}{2} \\
& =\frac{1}{5} \pi \cdot\left(\frac{h}{2}\right)^{2}-h \quad \frac{d v}{a t}=\frac{d\left(\frac{\pi}{12} h^{3}\right)}{d t} \\
& =\frac{1}{3} \pi-\frac{h^{3}}{4} \quad \frac{d v}{d t}=\frac{\pi}{2} \cdot 3 h^{2} \cdot \frac{d h}{d t} \\
& V=\frac{\pi}{2} h^{3} \quad Z=\frac{\pi}{n} \cdot 3 \times 3^{2} \cdot \frac{d h}{d t} \\
& \frac{d h}{d t}=\frac{24}{27 \pi}=\frac{8}{9 \pi} \quad 2=\frac{27}{12} \pi \frac{d u}{d t}
\end{aligned}
$$

vartatravely west at 50 males/h
B
nosth bo mike/h.
What ave the rate of the cap approaiby eacl sther
When car A is 0.3 mile B is o.4 Aniles
srom C

$$
\frac{d\left(x^{2}+y^{2}\right)}{d t}=\frac{d\left(z^{2}\right)}{A C}
$$

$$
z=0.5=\sqrt{0.3^{2}+0.4^{2}}
$$

$$
\begin{aligned}
& \frac{d t}{2 x \cdot x^{\prime}(t)}+2 y y^{\prime}(t)=2 z \cdot 2^{\prime}(t) \\
&
\end{aligned}
$$

$$
\begin{gathered}
2 x \cdot x^{\prime}(+)+2 y y(t) \\
2 \times 0.3(-50)+2 \times 0.4(-60)=2+0.5 \cdot \frac{d z}{d t}
\end{gathered}
$$

aman holkaloy a straight path at a speed $4 \mathrm{fi} / \mathrm{s}$ A spotingit is located on tho groud 20 ft frompaty keep tocuy on man

