$$
\frac{y}{x} \cdot\left(\frac{-x}{y}\right)=-1
$$

Chain Rules Impliai difteventicicion $\quad \log _{b} x \quad$ sixe $=\frac{y_{0} 0 p}{x^{0} 0}$

two curve are orthogonel of their xangene ines are perpendionkr at each point of measection
cosle

$$
E_{\substack{\text { Strightime } \\ \text { busimy }}}^{\text {Sing }}
$$

(1) $\frac{x^{2}+y^{2}=r^{2}}{\downarrow} \quad \frac{a x+b y=0}{v}$ pusing $\begin{aligned} & \text { throngh } \\ & \text { origon }\end{aligned}$
implizit differentiatos

$$
\left[\begin{array}{l}
x^{2}+y^{2}=r^{2} \\
a x+b y=0
\end{array}\right]
$$

$$
y=-\frac{a x}{b}
$$

$$
\begin{aligned}
& a+b y^{\prime}=0 \\
& y^{\prime}=\frac{-a}{b} \\
& y=\frac{-a x}{b} \Rightarrow y^{\prime}=\frac{-x}{-\frac{a x}{b}}=\frac{b}{a}
\end{aligned}
$$

since (x, y) is lolated on stright live ae inatensecion

$$
\begin{aligned}
& y^{1}=\frac{-x}{y} \int_{d e r i s i n}^{d x} \frac{d(a x+b y)}{d x}=0 \\
& \text { ofaru }
\end{aligned}
$$

$$
x^{2}-x y-y^{2}=1 \quad \text { slope of tengesselive }(2,1)
$$

(1)

$$
\begin{align*}
& \left(x^{2}-x y-y^{2}\right)^{\prime}=(1)^{\prime} \\
& \left(2 x-\left(x y^{\prime}+y \cdot\right)^{\prime}\right)-2 y y^{\prime}=0 \tag{2}
\end{align*}
$$

talkie ditterentialom on both
s. le
\leqslant compute desiva, ie

$$
2 x-x y^{\prime}-y-2 y y^{\prime}=0
$$

$$
2 x-y=x y^{\prime}+2 y y^{\prime}
$$

(3) expand every $\uparrow(4$ frindons item

$$
2 x-y=y^{\prime}(x+2 y)
$$ η^{\prime}

(5) contain y howl every item contain to the out Side lett every thing wither y^{\prime} to the other sian
now diane coticiers
take gut oman
factor i'
of $i \quad y=\frac{2 \times 2-1}{2+2+1}$

$$
=\frac{3}{4}
$$

Since gruphot $\log _{b} x$ i 3 symmetric lith graph of b^{x} according to $y=x$
thenetove. $\log _{6} x$ is difterentrabs

$$
\sqrt{\frac{d \log _{b} x}{d x}}=\frac{1}{x \ln b}
$$

Special care when $b=e$

$$
\begin{aligned}
& \ln b=\ln C=1 \\
& \frac{d(\ln x)}{4 x}=\frac{1}{x} \\
& \log \left(\frac{a}{5}\right)=\log a-\log b \\
& \frac{d}{d x}\left(\ln \left(\frac{x+1}{\sqrt{x-2}}\right)\right. \\
& \text { lots of polk } \\
& \downarrow \text { here. } \\
& =\frac{1}{\left.\left(\frac{x+1}{\sqrt{x-2}}\right) \cdot \frac{d}{d x}\left(\frac{x+1}{\sqrt{x-2}}\right)\right) \frac{1}{x+1}-\frac{1}{2(x-2)}} \\
& =\frac{d}{d x}(\ln (x+1)-\ln (\sqrt{x-2}) \\
& =\frac{d}{d x}(\ln (x+1))-\frac{d}{d x}(\ln (\sqrt{x-2}))=\frac{1}{x+1}-\frac{1}{\sqrt{x-2}} \frac{1}{2 \sqrt{x-2}}
\end{aligned}
$$

\ln M h hus doman $(0,+\infty)$

$\underbrace{\frac{f^{\prime}(x)=\frac{1}{x} \text { for every } x \neq 0 \text { Thke ln at both }}{x^{\frac{3}{4}} \sqrt{x^{2}+1}} \text { S.ete }}_{\text {foman }(-\infty, \infty)-\{07}$

$$
\ln y=\ln \left(\frac{x^{\frac{3}{4}} \sqrt{x^{2}+1}}{(3 x+2)^{f}}\right)
$$

$$
=\ln \left(x^{\frac{3}{4}} \sqrt{x^{2}+1}\right)-\ln \left((3 x+2)^{5}\right)
$$

$$
=\frac{3}{4} \ln (x)+\frac{1}{2} \ln \left(x^{2}+1\right)-5 \ln (3 x+2)
$$

$$
\ln y=\frac{3}{4} \ln x+\frac{1}{2} \ln \left(x^{2}+1\right)-5 \ln (3 x+2)
$$

take dittenentiation on both side

$$
\begin{aligned}
\frac{1}{y} \cdot y^{\prime} & =\frac{3}{4} \frac{1}{x}+\frac{1}{2} \frac{1}{x^{2}+1} \cdot(2 x)-5 \cdot \frac{1}{3 x+2} 3 \\
y^{\prime} & =y\left(\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right)
\end{aligned}
$$

derivative function of y^{\prime}
of we want explity
bukto answer $=\frac{x^{\frac{3}{4}} \sqrt{x^{2}+1}}{(3 x+2)^{5}}$

$$
y^{\prime}=\frac{x^{\frac{3}{4}} \sqrt{x^{2}+1}}{(3 x+2)^{5}}\left(\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right)
$$

\log dit $\left(l_{n}\right)$
(1) Take natural \log of bothicel $y_{2} f(x)$ wee law of log to expand the expression
(2) Difenentaree inplivity m with respect tox
4) save y^{\prime} and replace y by fox

$$
y=\frac{x^{\frac{3}{4}} \sqrt{x^{2}+1}}{\left(3 x^{2}+2\right)^{5}} \text { already assume }
$$

but $y=\frac{x^{3}}{3 x+1}$ Hew can we use Then we need ald method of the

$$
y=f(x) \Rightarrow|y|=|f(x)|
$$

We (an repeat our Method

We this to solve general version for power rule

$$
y=x^{n} \quad \frac{d y}{d x}=n x^{n-1} \quad n \in \mathbb{R}
$$

have proof it for n meleager
$y=x^{n} \quad n$ can be any number

$$
>0 r<0 r=0
$$

\neq
have y can be requtive inorder to take ln, first take absolve value

$$
\begin{aligned}
& \text { ablate valve } \\
& \qquad \begin{aligned}
&|y|=\left(x^{n}|\Rightarrow \ln | y \mid\right.=\ln \left(x^{n}\right) \\
&=\ln |x|^{n} \\
&\left|a^{n}\right|=|a|^{n} \\
& \mid \text { aw of } \mid .1
\end{aligned}
\end{aligned}
$$

$$
\ln (y)=n \cdot \ln (x) \quad y=x^{n}
$$

Rember fact

$$
\int \frac{d}{d x} \ln |x|=\frac{1}{x}
$$

Implicit difteranturtion method.

$$
\left.\left.\begin{array}{rl}
\left(\ln (y \mid)^{\prime}\right. & =(\ln \ln |x|)^{\prime} \\
\frac{1}{y} \cdot y^{\prime} & =n\left(\frac{1}{x}\right) \\
y^{\prime} & =n \cdot \frac{y}{x}
\end{array}\right) n \cdot \frac{x^{n}}{x}\right)
$$

Method (D)

$$
\begin{aligned}
& y^{4} x^{\sqrt{x}}=\left(e^{\ln x}\right)^{\sqrt{x}} \Rightarrow y=e^{\ln x \cdot \sqrt{x}} \\
& e^{\ln x}=x \\
& \text { chain } \\
& \text { pule } \\
& \Rightarrow[\underbrace{\begin{array}{l}
e^{(\cdot)} \text { familiar } \\
\left.\sqrt{\ln x} \cdot \delta_{x}\right) \text { product } \\
\text { run }
\end{array}} \\
& y=e^{\ln x \cdot \sqrt{x}} \\
& \frac{d y}{d x}=e^{\ln x \cdot \sqrt{x}} \frac{d}{d x}(\ln x \cdot \sqrt{x}) \\
& =x^{\sqrt{x}}\left(\underline{\left.\ln x \cdot \frac{1}{2 \sqrt{x}}+\sqrt{x} \cdot \frac{1}{x}\right)}\right. \\
& =x^{\sqrt{x}}\left(\frac{\ln x}{2} \cdot \frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{x}\right) \\
& =x^{x_{x}}\left(\frac{\ln x}{2}+1\right)\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Methed (2)
$y=x^{\mathbb{R}} \quad x \geqslant 0$ to mare sure re makesense domain $x \geqslant 0 \quad y \geqslant 0$

$$
\begin{aligned}
& \ln (y)=\ln \left(x^{\sqrt{x}}\right) \\
& y \ln (y)=\sqrt{x} \ln (x)
\end{aligned}
$$

Cdifterentrute both sile

$$
\begin{aligned}
& \begin{aligned}
\frac{y^{\prime}}{y} & =\frac{d}{1 x}(\sqrt{x} \cdot \ln (x)) \\
& =\frac{\sqrt{x}}{x}+\frac{\sqrt{x} x}{2 \sqrt{x}}
\end{aligned} \\
& y^{\prime}
\end{aligned}=y=x^{\sqrt{x}}\left(\frac{\sqrt{x}}{x}+\frac{\ln x}{2 \sqrt{x}}\right)=x^{\sqrt{x}}\left(\frac{\sqrt{x}}{x}+\frac{\ln x}{2 \sqrt{x}}\right) .
$$

$$
\begin{aligned}
& l \text { is poive sumity }\left.\frac{d}{d x}\left(e^{x}\right)\right|_{x=0}=1 \\
& \frac{d}{d x}(\ln x)=\frac{1}{x} \quad(f(x)=\ln x \\
& \left.\frac{d}{d x}(\ln x)\right|_{1}=\frac{1}{1}=\frac{\sqrt{\prime}(1)=1}{1} \\
& \left.\begin{array}{rl}
=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} & =\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln (1)}{h} \\
\text { definition of } \\
\text { gerin atne }
\end{array} \lim _{h \rightarrow 0} \frac{\ln (1+h)}{h}=\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1 \\
& \lim _{x \rightarrow 0} \frac{1}{x} \cdot \ln (1+x)=1 \quad b \ln (a)=\ln \left(a^{b}\right) \\
& \mid a w \text { at loy }
\end{aligned}
$$

$$
\begin{aligned}
& { }_{x \rightarrow a}=f\left(\lim _{x \rightarrow \infty}(x)\right) \\
& e^{\lim _{x \rightarrow 0} \ln (1+x)^{g(x)}}=e^{\frac{1}{x}},
\end{aligned}
$$

f(A)

$$
\begin{gathered}
\text { LHAS }=\lim _{x \rightarrow 0} e^{\ln (1+x)^{\frac{1}{x}}=R H S=e} \begin{array}{c}
\forall \\
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \quad n=\frac{1}{x}=(x \rightarrow \mathbb{Q} \\
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
\end{array}
\end{gathered}
$$

$y=\arcsin x$ means $\quad \sin y=x \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

$$
-1 \leq x \leq 1
$$

How can we finl darcsinx$\frac{d x}{?}=\frac{d y}{d x}=4$
$\operatorname{Sin} y=x$ using imptrit diftrentiation

$$
\frac{d(\sin y)}{d x}=\frac{d x}{d x}
$$

$$
\cos y \cdot y^{\prime}=1
$$

$$
y^{\prime}=\frac{1}{\cos y}
$$

We needix expla

$$
\begin{aligned}
& \sin y=x \\
& {\left[-\frac{\pi}{2} \leqslant y \leq \frac{\pi}{2}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \cos y^{2} \times s^{2}=\sin ^{2} \\
&=r^{2} \\
& x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}(\arccos x)=\frac{-1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}}
\end{aligned}
$$

$y=\arctan x$ means tany $=x$

$$
\begin{aligned}
& \frac{d(\tan y)}{d x}=\frac{d x}{d x} \quad y^{\prime}=\frac{1}{\sec ^{2} y}=\frac{1}{1+x^{2}} \\
& \sec ^{2} y \cdot y^{\prime}=1 \sqrt{\sec ^{2} y-\tan ^{2} y=\frac{1}{\cos ^{2} \frac{x^{2} y}{-\cos ^{2}}}} \begin{array}{l}
\sec ^{2} y=1+\tan ^{2} y \\
=\operatorname{tax}
\end{array} \\
& \frac{d}{d x}(\operatorname{arccsc} x)=\frac{-1}{x \sqrt{x^{2}-1}} \\
& \frac{d}{d x}(\operatorname{arcsec} x)=\frac{1}{x \sqrt{x^{2}-1}} \\
& \frac{d}{d x}(\operatorname{arcct} x)=\frac{-1}{1+x^{2}}
\end{aligned}
$$

(1) $\quad y=\frac{1}{\arcsin x} \quad y^{\prime}$
cham nies or quotiene rule

$$
\begin{aligned}
& y^{\prime}=-(\arcsin x)^{-2} \cdot \frac{1}{\sqrt{1-x^{2}}} \\
& =\frac{-1}{\arcsin x \sqrt{1-x^{2}}}
\end{aligned}
$$

(2) $f(x)=x \arctan \sqrt{x}$
product nue
$f^{\prime}(x)=x \frac{1}{1+(\sqrt{x})^{2}} \cdot \frac{1}{2 \sqrt{x}}+\arctan \sqrt{x}$

$$
\begin{aligned}
& =\frac{x}{2(1+x) \sqrt{x}}+\arctan \sqrt{x} \\
& =\frac{\sqrt{x}}{2(1+x)}+\arctan \sqrt{x}
\end{aligned}
$$

$$
\begin{aligned}
g(x) & =\operatorname{arcsec}\left(x^{2}\right) \sqrt{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}} \\
\frac{d g(x)}{d x} & =\frac{1}{\left(x^{2}\right) \sqrt{\left(x^{2}\right)^{2}-1}} \cdot\left(v^{x}\right) \\
& =\frac{2 x}{x^{2} \sqrt{x^{4}-1}} \\
& =\frac{2}{x \sqrt{x^{4}-1}}
\end{aligned}
$$

$$
\begin{aligned}
& y=e^{\frac{\arcsin \left(x^{2}\right)}{d y}} y^{\prime} \\
& \frac{d y}{d x}=e^{\left(\arcsin \left(x^{2}\right)\right)} \frac{d}{d x}\left(\arcsin \left(x^{2}\right)\right) \\
&=\frac{1}{\left.1-x^{2}\right)} \\
&=e^{\arcsin \left(x^{2}\right)} \cdot \frac{1}{\sqrt{1-\left(x^{2}\right)^{2}}} \cdot 2 x \\
&=e^{\arcsin \left(x^{2}\right)} \frac{2 x}{\sqrt{1-x^{4}}}
\end{aligned}
$$

$$
\begin{aligned}
& y=\arctan \left(x-\sqrt{1+x^{2}}\right) \sqrt{\frac{d}{d x} \tan ^{-1} x}=\frac{1}{1+x^{2}} \\
& y^{\prime}=\frac{1}{1+\left(x-\sqrt{1+x^{2}}\right)^{2}} \frac{d}{d x}\left(x-\sqrt{1+x^{2}}\right) \\
&=\frac{1}{1+\left(x-\sqrt{1+x^{2}}\right)^{2}} \cdot\left(1-\frac{2 x}{2 \sqrt{1+x^{2}}}\right) \\
&=\frac{1}{1+\left(x-\sqrt{1+x^{2}}\right)^{2} \cdot\left(1-\frac{x}{\sqrt{1+x^{2}}}\right)}
\end{aligned}
$$

$y=x^{\sin x}$ log of difterentintion y^{\prime}

$$
\begin{aligned}
& \ln |y|=\ln \left(\left|x^{\sin x}\right|\right)_{\text {no.ed }} \\
&=\ln \left(|x|^{\sin x}\right)_{\text {nedd }}^{\text {nere }} \\
& \ln |y| \\
& \ln |y|=\frac{\sin x \ln (|x|)}{T}
\end{aligned}
$$

\checkmark take derivation poductrice

$$
\begin{aligned}
& \frac{y^{\prime}}{y}=\sin x \frac{1}{x}+\cos x \cdot \ln (|x|) \\
& y^{\prime}=y\left(\frac{\sin x}{x}+\cos x \underline{\ln (x)}\right)
\end{aligned}
$$

constant c. $c^{\prime}=0 \quad x^{\prime}=1$

$$
\begin{aligned}
& (f+g)^{\prime}=f^{\prime}+q^{\prime} \\
& \left(x^{n}\right)^{\prime}=n \cdot x^{n-1} \\
& (f \cdot g)^{\prime}=f g^{\prime}+g \cdot f^{\prime} \\
& \binom{f}{g}^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}} \\
& \frac{d}{d x}(c f)=c \cdot \frac{d}{d x} f \\
& (f \circ g)=f^{\prime}(g(x)) \cdot g^{\prime}(x) \quad \downarrow^{\text {using chain rule }} \text { to prove } \\
& \frac{d}{d x}\left(b^{x}\right)=\ln b\left(b^{x}\right) \\
& \text { Implizi differentiation } \\
& \text { we cannot } \\
& \text { expritly wite the } \\
& \text { function } y=f(x) \\
& \frac{d}{d x} \ln x=\frac{1}{x} \\
& \frac{d}{d x} \log _{b}^{x} x=\frac{1}{\ln b \cdot x}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x}(\arcsin x) & =\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}(\arccos x) & =\frac{-1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}(\arctan x) & =\frac{1}{1+x^{2}}
\end{aligned}
$$

(1) $e=\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
(2) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$
preperiy of ln property of expprebrial furction

$$
\begin{aligned}
& \begin{array}{l}
\ln (a b)=\ln \left(\frac{x+2}{x+b}\right)=\ln (x+2)+\ln (x+3) \\
\ln \left(\frac{x}{}\right)
\end{array} \\
& \begin{array}{l}
\text { Tegsitur } \\
\text { to diterevirus }
\end{array}
\end{aligned}
$$

