MATH 141 Final Exam

December 18, 2022

NAME (please print legibly):

Your University ID Number:

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:

Enter your answers where indicated in order to receive credit. Calculators and notes are not permitted. If you are confused about the wording of a question or need a clarification, you should raise your hand and ask a proctor about it.
Unless otherwise indicated, you must show all work to justify your answers and receive full credit.

Part A

1. (15 points) Determine the following limits. If the limit is infinite, specify $-\infty$ or $+\infty$. Show your work, and justify your answers.
(a) $\lim _{x \rightarrow \frac{1}{2}^{-}} \frac{3 x^{2}+2}{2 x-1}=\frac{\text { nonzero }}{z e r o}= \pm \infty$
$x \rightarrow \frac{1}{2}^{-}$, so $x<\frac{1}{2}$. Thin $2 x<1$ all $2 x-1<0$.
If $x=\frac{1}{2}, 3 x^{2}+2>0$. Then, as $x \rightarrow \frac{1}{2}^{-}, \frac{3 x^{2}+2}{2 x-1}=\frac{9}{\Theta}<0$. we get - ∞

Answer:

$$
-\infty
$$

(b) $\lim _{x \rightarrow 0} \frac{\sin (x)+1}{\cos (x)+1}$

$$
=\frac{\sin (0)+1}{\cos (0)+1}=\frac{1}{2}
$$

Answer:

$$
\frac{1}{2}
$$

$$
\text { (c) } \begin{aligned}
& \lim _{x \rightarrow-3}\left[\frac{4 x}{(x-3)(x+3)}-\frac{2}{x+3}\right]=\infty-\infty \\
& =\lim _{x \rightarrow-3} \frac{4 x-2(x-3)}{(x-3)(x+3)}=\lim _{x \rightarrow-3} \frac{4 x-2 x+6}{(x-3)(x+3)} \\
& =\lim _{x \rightarrow-3} \frac{2 x+6}{(x-3)(x+3)}=\lim _{x \rightarrow-3} \frac{2(x+3)}{(x-3)(x+3)}=\frac{2}{-6}
\end{aligned}
$$

Answer:

$$
\frac{-1}{3}
$$

2. (9 points)

Suppose $f(x)$ satisfies the inequality

$$
2 \sqrt{3 x}-4 \leq f(x) \leq x^{2}-5 x+8
$$

State why $\lim _{x \rightarrow 3} f(x)$ exists, and find its value.

$$
\begin{aligned}
\text { Since } \lim _{x \rightarrow 3} 2 \sqrt{3 x}-4=2(3)-4=2 \\
9-15+8=2,
\end{aligned}
$$

and $\lim _{x \rightarrow 3} x^{2}-5 x+8=9-15+8=2$,
These outer limits are equal.
since the inequality holds as well,
we have $\lim _{x \rightarrow 3} f(x)=2$ by the squeeze theorem.

Answer:
2, Squeeze Therm holds
3. (12 points) Determine all horizontal and vertical asymptotes of the graph of $y=f(x)$, where

HA

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-6 x}}{x+1}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}\left(1-\frac{6}{x}\right)}}{x+1}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}} \sqrt{1-\frac{6}{x}}}{\not x\left(1+\frac{1}{x}\right)}=\frac{\sqrt{1-0}}{1+0}=1 \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}} \sqrt{1-\frac{6}{x}}}{x\left(1+\frac{1}{x}\right)}=\lim _{x \rightarrow-\infty}(-1) \frac{\sqrt{1-\frac{6}{x}}}{\left(1+\frac{1}{x}\right)}=(-1) \frac{\sqrt{1-0}}{1+0}=-1 \\
& \text { \# If } x<0, \sqrt{x^{2}}=-x .
\end{aligned}
$$

So the two hor: zontal asymptotes are

$$
y=1 \text { and } y=-1
$$

VA Setting the denswintor equal to zero,

$$
x+1=0 \text {, so } x=-1 \text { is possibly }
$$

a vertical asymptote.
We test $\lim _{x \rightarrow-1} \frac{\sqrt{x^{2}-6 x}}{x+1}$ and find that the numerator is now-zew of $x=-1$. Hence $x=-1,3$ a vertical asymptote.
$H A: y=1, y=-1$
$\vee A: \quad x=-1$
4. (12 points) Consider the function $f(x)=2 x^{3}+3 x^{2}+4$.
(a) Why does the Intermediate Value Theorem (IVT) hold for f on the intervals $[-3,-1]$

$$
\begin{aligned}
& \text { and }[-1,1] \text { ? } f \text { is a polynomial, so coutin nous } \\
& \text { on }(-\infty, \infty) \text {. So it holds on any } \\
& \text { closed interval. }
\end{aligned}
$$

(b) Does the IVT guarantee a solution for $f(x)=0$ on the interval $[-3,-1]$? Why or why not?

$$
\begin{aligned}
& f(-1)=-2+3+4=5 \\
& f(-3)=-54+27+4=-23 \\
& \text { Since }-23<0<5, \text { IVT does guarantee } \\
& \text { a solution. }
\end{aligned}
$$

(c) Does the IVT guarantee a solution for $f(x)=0$ on the interval $[-1,1]$? Why or why not?

$$
f(1)=9 \text {. Since } f(-1) \text { is also great r }
$$

Than zero, I VT does not guavoutee a Solution.
5. (12 points) The differentiable functions f and g are graphed below along with their tangent lines at $x=3$.

(a) Compute $f^{\prime}(3)$.

The slope if the tangent at $(3, f(3))$

$$
\text { is } \quad \frac{5-3}{3-(-1)}=\frac{2}{4}=\frac{1}{2}
$$

Hence $f^{\prime}(3)=\frac{1}{2}$.
Answer:
(b) Compute $g^{\prime}(3)$.

The slope of the tangent at

$$
(3, g(3)) \text { is } \frac{1-3}{3-(-1)}=\frac{-2}{4}
$$

Hence $g^{\prime}(3)=-\frac{1}{2}$
Answer:

$$
-\frac{1}{2}
$$

(c) Let $h(x)=f(x) g(x)$. Compute $h^{\prime}(3)$.

$$
\begin{aligned}
h^{\prime}(x) & =f(x) g^{\prime}(x)+f^{\prime}(x) g(x) \\
h^{\prime}(3) & =f(3) g^{\prime}(3)+f^{\prime}(3) g(3) \\
& =(5)\left(-\frac{1}{2}\right)+\left(\frac{1}{2}\right)(1) \\
& =-\frac{5}{2}+\frac{1}{2}=-\frac{4}{2}=-2
\end{aligned}
$$

Answer:

$$
-2
$$

6. (10 points) Let $f(x)=e^{2 x+1}$. Determine $f^{-1}(x)$, the inverse function.

$$
\begin{aligned}
y & =e^{2 x+1} \\
\ln y & =\ln \left(e^{2 x+1}\right)=2 x+1 \\
\ln y & -1=2 x \\
x & =\frac{\ln y-1}{2} \\
f^{-1}(x) & =\frac{\ln (x)-1}{2}
\end{aligned}
$$

7. (20 points) Find the derivatives of the following functions. You do not need to simplify. Circle your answer.
(a) $g(t)=\frac{e^{t} \sin t}{t^{2}}$

$$
g^{\prime}(t)=\frac{t^{2}\left(e^{t} \cos t+e^{t} \sin t\right)-e^{t} \sin t(2 t)}{t^{4}}
$$

(b) $h(r)=\left(r^{2}-2\right)^{5} \tan (2 r+3)$

$$
\begin{aligned}
& h(r)=\left(r^{2}-2\right)^{5} \tan (2 r+3) \\
& h^{\prime}(r)=\left(r^{2}-2\right)^{5} \sec ^{2}(2 r+3)(2)+5\left(r^{2}-2\right)(2 r) \tan (2 r+3)
\end{aligned}
$$

(c) $f(x)=e^{e^{x}}$

$$
f^{\prime}(x)=e^{e^{x}} e^{x}
$$

(d) $k(T)=\ln (2 T) 3^{T}$

$$
k^{\prime}(T)=\ln (2 T)\left(3^{T}\right)(\ln 3)+\frac{2}{2 T}\left(3^{T}\right)
$$

8. (10 points) Use logarithmic differentiation to find the derivative of y.

$$
\begin{aligned}
& y=\frac{e^{2 x}\left(x^{2}+1\right)^{5}\left(x^{6}+2\right)}{\left(1+e^{x}\right) x^{4}} . \\
& \ln y=\ln \left[e^{2 x}\left(x^{2}+1\right)^{5}\left(x^{6}+2\right)\right]-\ln \left[\left(1+e^{x}\right) x^{4}\right] \\
&=\ln \left(e^{2 x}\right)+\ln \left[\left(x^{2}+1\right)^{5}\right)+\ln \left(x^{6}+2\right)-\ln \left(1+e^{x}\right)-\ln \left(x^{4}\right) \\
&=2 x+5 \ln \left(x^{2}+1\right)+\ln \left(x^{6}+2\right)-\ln \left(1+e^{x}\right)-4 \ln x \\
& y_{y}^{\prime}=2+\frac{5(2 x)}{x^{2}+1}+\frac{6 x^{5}}{x^{6}+2}-\frac{e^{x}}{1+e^{x}}-\frac{4}{x} \\
& y^{\prime}=\frac{e^{2 x}\left(x^{2}+1\right)^{5}\left(x^{6}+2\right)}{\left(1+e^{x}\right) x^{4}}\left[2 x \frac{10 x}{x^{2+1}}+\frac{6 x^{5}}{x^{6}+2}-\frac{e^{x}}{1+e^{x}}-\frac{4}{x}\right]
\end{aligned}
$$

Part B
9. (15 points)

The position of a particle moving along the real number line is given by

$$
s(t)=t^{3}-9 t^{2}+24 t-10
$$

(a) The particle changes direction exactly once between $t=0$ and $t=3$. Determine when this takes place.

Set $s^{\prime}(t)=0$.

$$
\begin{aligned}
& 3 t^{2}-18 t+24=0 \\
& 3\left(t^{2}-6 t+8\right)=0 \\
& 3(t-4)(t-2)=0
\end{aligned}
$$

$$
t=2,4
$$

If $t<2$, then $s^{\prime}(t)>0$, so moving forward.
If $2<t<4$, then $s^{\prime}(t)<0$, so moving backward.
Then the particle charges direction wen $t=2$.
(b) Compute the total distance traveled by the particle between $t=0$ and $t=3$.

$$
\begin{aligned}
& s(0)=-10 \\
& s(z)=8-9(4)+24(2)-10=10
\end{aligned}
$$

So the particle travels 20 units in the first

$$
2 \text { seconds. }
$$

$$
\begin{gathered}
2 \text { seconds. } \\
s(3)=27-81+24(3)-10=8
\end{gathered}
$$

So the particle travels 2 units in the thine sccord.
the total is 22 .

10. (20 points) Suppose a spherical balloon is being filled with air so that its volume is increasing at a rate of $16 \mathrm{~cm}^{3} /$ minute. (The volume of a sphere is given by $V=\frac{4}{3} \pi r^{3}$. The surface area of a sphere is given by $S=4 \pi r^{2}$.)
(a) When the radius of the balloon is 2 cm , at what rate is the radius changing?

$$
\frac{d v}{d t}=16
$$

Find $\frac{d r}{d t}$ when $r=2$.

$$
\begin{aligned}
v & =\frac{4}{3} \pi r^{3} \\
\frac{d v}{d t} & =\frac{4}{3} \pi\left(3 r^{2}\right) \frac{d r}{d t} \\
& =4 \pi r^{2} \frac{d r}{d t} \\
& =16 \pi \frac{d r}{d t} \cdot f r=2 \\
\text { Ten } \frac{d v}{d t} & =\frac{16}{16 \pi}=\frac{1}{\pi} \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

(b) When the radius of the balloon is 2 cm (as in part (a)), at what rate is the surface area of the balloon changing?

$$
\begin{aligned}
s & =4 \pi s^{2} \\
\frac{d s}{d t} & =4 \pi(2 r) \frac{d r}{d t} \\
& =4 \pi(4)\left(\frac{1}{\pi}\right)=16 \mathrm{~cm}^{2} / \mathrm{min}
\end{aligned}
$$

11. (10 points) Use linearization to estimate $\sqrt[3]{8.12}$. Your answer should be in decimal form.

$$
\begin{aligned}
& L(x)=f(a)+f^{\prime}(a)(x-a) \\
& \text { Let } a=8 \text { and } f(x)=\sqrt[3]{x} . \\
& \text { Then } f(a)=\sqrt[3]{8}=2 \text {, ale } f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} \\
& f^{\prime}(a)=\frac{1}{3} 8^{-\frac{2}{3}}=\frac{1}{3}\left(\frac{1}{\sqrt[3]{8})^{2}}=\frac{1}{3}\left(\frac{1}{4}\right)=\frac{1}{12}\right. \\
& L(x)=2+\frac{1}{12}(x-8) . \\
& L(8.12)=2+\frac{1}{12}(8.12-8) \\
&=2+\frac{1}{12}(.12) \\
&=2.01
\end{aligned}
$$

12. (10 points) Find the absolute minimum and maximum values of the function

$$
f(x)=x^{2} e^{x}
$$

on the interval $[-1,1]$.

$$
\begin{aligned}
f^{\prime}(x) & =x^{2} e^{x}+2 x e^{x} \\
& =e^{x}\left(x^{2}+2 x\right)
\end{aligned}
$$

To find critical numbers, set $e^{x}\left(x^{2}+2 x\right)=0$.
Since $e^{x} \neq 0$, critical nunews satisfy $x(x+2)=0$.
So $x=0,-2$ are the critical numbers.
will ignore $x=-2$, as it sit in ter intrinel.
Testing f at $x=0$ un the endpoints of the aten:

then the absolute min valve

$$
\begin{aligned}
& \text { is } 0 \text {, and it occurs } \\
& \text { at } x=0 \text {. }
\end{aligned}
$$

The consolute max value 3
e, are it occurs at

$$
x=1
$$

13. (10 points) Let $f(x)=6-3 x^{2}$.

Determine the number c in the interval $[-2,1]$ guaranteed by the Mean Value Theorem.
MUT say that there is a c in $(-2,1)$ such that $f^{\prime}(c)=\frac{f(1)-f(-2)}{1-(-2)}$. This 3 true, because f is continuous ane differentiable on all of $(-\infty, \infty)$, as it is a polynomial.

$$
\begin{aligned}
& f(1)=6-3=3 \\
& f(-2)=6-3(4)=-6 \\
& \frac{f(1)-f(-2)}{1-(-2)}=\frac{3-(-6)}{1-(-2)}=\frac{9}{3}=3 \\
& f^{\prime}(x)=-6 x \\
& \text { Setting }-6 x=3 \\
& \quad x=-\frac{1}{2}
\end{aligned}
$$

So $c=-\frac{1}{2}$ is the desired number.
14. (15 points) Determine the following limits.
(a) $\lim _{t \rightarrow 0} \frac{e^{t}-e^{2 t}}{t}$ This limit has the indeternivate form $\frac{0}{0}$.

By L'Hopital's rule,

$$
\begin{aligned}
& \text { By L'Hopitad's rule, } \\
& \lim _{t \rightarrow 0} \frac{e^{t}-e^{2 t}}{t}=\lim _{t \rightarrow 0} \frac{e^{t}-2 e^{2 t}}{1}=e^{0}-2 e^{0}=1-2=-1
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0^{+}} x^{2 x}$ This limit has the indeterminate form 0 .
set $y=x^{2 x}$. Then $\ln y=2 x \ln x$.

$$
\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} 2 x \ln x=\lim _{x \rightarrow 0^{+}} \frac{2 \ln x}{\frac{1}{x}}
$$

This limit has the indetermirete form $-\frac{\infty}{\infty}$.

$$
\begin{aligned}
& \text { By L'Hapital's Rule, } \\
& \lim _{x \rightarrow 0^{+}} \frac{2 \ln x}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{2}{x}}{\frac{-1}{x^{2}}}=\lim _{x^{\rightarrow 0^{+}}} \frac{2}{x} \cdot \frac{-x^{2}}{1}=\lim _{x \rightarrow 0^{+}}-x=0 \\
& \text { Fiddly, } \lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0^{+}} e^{\ln y}=e^{\lim _{x \rightarrow 0^{+}} \ln y}=e^{\varphi}=1
\end{aligned}
$$

15. (8 points) Suppose $f(x)$ is a polynomial.
(a) Suppose $f(4)$ is a local (relative) minimum value. Which of the following are possible? Choose either "Possible" or "Not Possible" in each case.
(i) $f^{\prime}(4)=0$ and $f^{\prime \prime}(4)>0$.

$$
\text { Ex } f(x)=(x-4)^{2}
$$

(ii) $f^{\prime}(4)=0$ and $f^{\prime \prime}(4)<0$.

Possible Not Possible Possible Not Possible If $f^{\prime \prime}(4)<0$, then $f .3$ concave down at $x=4$.
(iii) $f^{\prime}(4)=0$ and $f^{\prime \prime}(4)=0$.

Ex $f(x)=(x-4)^{3}$
(iv) $f^{\prime}(4)<0$ and $f^{\prime \prime}(4)=0$.

Possible Not Possible

If $f^{\prime}(4)<0, f$ is decreasing at $x=4$, ane it cannot ham a local min there.
(b) Suppose $(2, f(2))$ is an inflection point. Which of the following are possible?

Choose either "Possible" or "Not Possible" in each case.
(i) $f^{\prime}(2)=0$ and $f^{\prime \prime}(2)=0$.

Ex: $f(x)=(x-2)^{3}$
(ii) $f^{\prime}(2)=0$ and $f^{\prime \prime}(2)<0$.

If $f^{\prime \prime}(2)<0$, it can't have an inflection point there.
(iii) $f^{\prime}(2)>0$ and $f^{\prime \prime}(2)=0$.

Possible Not Possible $\begin{array}{ll}\text { Ex } f(x)=-(x-4) e^{x^{-4}} & \text { This is a reflection and } \\ \text { troussotion of the more farilar } \\ f(x)=x e^{x} .\end{array}$
(iv) $f^{\prime}(2)<0$ and $f^{\prime \prime}(2)>0$.
Similar to (ii)
16. (12 points) Suppose an unknown function f is differentiable on (a, e) and that below is the graph of its derivative on that interval.

(a) Put the values $f^{\prime}(b), f^{\prime}(c), f^{\prime}(d)$ in order from least to greatest.

Answer: $f^{\prime}(c)<\underline{f^{\prime}(d)}<f^{\prime}(b)$
(b) Put the values $f(b), f(c), f(d)$ in order from least to greatest.

Since $f^{\prime}(x) \geq 0$, it increases.

$$
\text { Answer: } f(b)<\underline{f(c)}<\underline{f(d)}
$$

(c) On the interval (b, c), is $f^{\prime \prime}(x)$ (the second derivative) positive or negative? (Justify your answer.) It is negative. Since $f^{\prime}(x)$ decerases on that interisel, its derivative is negative.
(d) Determine any points of inflection of the graph of f. (Justify your answer.)

$$
\begin{aligned}
& (b, f(b)),(c, f(c)) \text {, an }(d, f(d)) \text { are inflection points. } \\
& \text { We can determine this, because } f^{\prime} \text { changes from ineressing } \\
& \text { to decreasing to ineveesirg, etc., so } f^{\prime \prime} \text { charges sign at } \\
& \text { those points. }
\end{aligned}
$$

