MATH 141 Midterm 2

November 15, 2022

NAME (please print legibly): \qquad

Your University ID Number: \qquad

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:

Enter your answers where indicated in order to receive credit. Calculators and notes are not permitted. If you are confused about the wording of a question or need a clarification, you should raise your hand and ask a proctor about it.
Unless otherwise indicated, you must show all work to justify your answers and receive full credit.

1. (15 points)

Let

$$
f(x)=\frac{2 x^{k}+x^{3}-2}{3 x^{4}-2 x}
$$

(a) Find all values of k so that $\lim _{x \rightarrow \infty} f(x)=0$, or explain why this is not possible.
Answer:
(b) Find all values of k so that $\lim _{x \rightarrow \infty} f(x)=\infty$, or explain why this is not possible.
Answer:
(c) Find all values of k so that $\lim _{x \rightarrow \infty} f(x)=\frac{2}{3}$, or explain why this is not possible.

Answer:

2. (10 points) Suppose we use the following limit to determine the derivative of a function $f(x)$ at $x=a$.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}
$$

(a) What is the function $f(x)$ and the number a ?

Answer:

(b) Find the derivative $f^{\prime}(a)$ using any method you wish.
Answer:
3. (20 points) Suppose that the functions f and g satisfy the following:

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	$-\pi$	-2	2	3
2	1	7	5	4

(a) Let $h(x)=3 f(x)-3 g(x)+3$. Find $h^{\prime}(2)$.
Answer:
(b) Let $h(x)=\frac{f(x)}{g(x)}$. Find $h^{\prime}(2)$.

Answer:

(c) Let $h(x)=(g \circ f)(x)$. Find $h^{\prime}(2)$.

Answer:

(d) Let $h(x)=e^{f(x) g(x)}$. Find $h^{\prime}(2)$.
Answer:
4. (10 points) Determine the derivative of the following functions. You do not have to simplify. Circle your final answer.
(a) $f(x)=e^{x} \ln (x)+\tan (x)$
(b) $h(z)=2^{z}+z^{\sqrt{2}}+e^{2}+2^{\pi}$
5. (20 points) Determine the derivatives of the following functions. You do not have to simplify. Circle your final answer.
(a) $f(x)=5 e^{x^{3}}+\ln (\ln x)$
(b) $g(t)=\ln \left(t e^{-2 t}\right)$
(c) $h(z)=\left(5 z^{2}-6 z\right)^{9}\left(z^{3}+7\right)$
(d) $k(w)=\cos \left(\sqrt{w^{5}+3 w^{2}}\right)$
6. (15 points) Determine an equation for the line tangent to the curve satisfying

$$
x^{2}+x y=x+3 \sin (y)
$$

at the point $(1,0)$.

Answer:
7. (10 points) Let $g(x)=\left(x^{2}+1\right)^{x}$. Find $g^{\prime}(x)$. (Hint: Use logarithmic differentiation.)

[^0]
[^0]: Answer:

