MTH 141

Final Exam

December 13, 2020, 9PM Version

Before we begin, please copy the following honor pledge and sign your name. (The same honesty standards apply as on the midterms. Cursive is not required).

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

TO RECEIVE FULL CREDIT, JUSTIFY YOUR ANSWERS.

Please tell us your instructor's name.

Please tell us your proctor's name.

This information will be submitted at the end of the exam as Question 10.

1. (12 points) Evaluate the following expressions.
(V1)
(a) $e^{3 \ln 2}$

$$
=e^{\ln \left(2^{3}\right)}=e^{\ln 8}=8
$$

(b)

$$
\begin{aligned}
& \log _{2} 12+\log _{2} 14-\log _{2} 21 \\
& =\log _{2} \frac{(12)(14)}{21}=\log _{2} \frac{(3 \cdot 4 \cdot 7 \cdot 2)}{3 \cdot 7}=\log _{2}(8)=3
\end{aligned}
$$

(c) $\sec ^{2}(\pi / 4)-\csc (\pi / 2)$

$$
=\frac{1}{\left(\cos \left(\frac{\pi}{4}\right)\right)^{2}}-\frac{1}{\sin \left(\frac{\pi}{2}\right)}=2-1=1
$$

(d) $\tan ^{-1}(\sqrt{3})$

$$
=\frac{\pi}{3}
$$

(V2)
(a) $e^{3 \ln 2}$

$$
=8
$$

(b) $\log _{7} 98+\log _{7} 1-\log _{7} 2$

$$
\begin{aligned}
& \operatorname{og}_{7} 98+\log _{7} 1-\log _{7} 2 \\
& =\log _{7} \frac{98}{2}+\log _{7}(1)=\log _{7}(49)+0=2
\end{aligned}
$$

(c) $\sec ^{2}(2 \pi / 3)-\cot (\pi / 4)$

$$
=4-1=3
$$

(d) $\tan ^{-1}(-\sqrt{3})$

$$
=-\frac{\pi}{3}
$$

2. (8 points)
(V1) Let

$$
f(x)=\frac{x\left(x^{2}-16\right)(2 x-1)}{(-3 x+2)(x+4)\left(x^{2}+1\right)}
$$

(a) Find all horizontal asymptotes of the graph $y=f(x)$.
(b) Find all vertical asymptotes of the graph $y=f(x)$.
(c) Find all numbers x at which $f(x)$ is discontinuous. Categorize each discontinuity as a removable, jump, or infinite discontinuity.
(a) The highest power tern in the nurevator is $2 x^{4}$.

In the denomivoter, it's $-3 x^{4}$.
Then $\lim _{x \rightarrow \infty} f(x)=\frac{x^{4}(2+\text { terms with limit zero) }}{x^{4}(-3+\text { terms with limit zero.) }}=\frac{-2}{3}$

$$
\lim _{x \rightarrow-\infty} f(x) \text { is the same. }
$$

(b) He zeros of the denominator are $x=\frac{2}{3}$ are $x=-4$, as $x^{2}+1 \geqslant 1$. We note that $x=-4$ is also a zero of the numerator.

$$
\begin{aligned}
& \text { as zero of the nurerotor. } \\
& \left.\lim _{x \rightarrow 4} f(x)=\lim _{x \rightarrow-4} \frac{x(x-4)(x+4)(2 x-1)}{(-3 x+2)(x+4)\left(x^{2}+1\right)}=\frac{(-4)(-8)(-9)}{(14)(17)}\right) \\
& \text { which is finite. Hence thea is no }
\end{aligned}
$$

which is finite. Hence thea is no
$\checkmark A$ © $x=-4$.
Since $\frac{2}{3}$ is not a zero ot the numevctar, we have a VA @ $x=\frac{2}{3}$.
(c) A rational function is continuous on its domain, so we need only consider $x=-4$ ar $x=\frac{2}{3}$. From (b), there is a removable discontinuity at $x=-4$, ane an infinite ore at $x=\frac{2}{3}$.

2. (8pts)

(V2) Let

$$
f(x)=\frac{x(x-1)(7 x-2)}{(-3 x+2)\left(x^{2}-1\right)}
$$

(a) Find all horizontal asymptotes of the graph $y=f(x)$.
(b) Find all vertical asymptotes of the graph $y=f(x)$.
(c) Find all numbers x at which $f(x)$ is discontinuous. Categorize each discontinuity as a removable, jump, or infinite discontinuity.

3. (6 points)
(V1) Let $f(x)=7+\ln (x+6)$.
(a) Find $f^{-1}(x)$, the inverse function of f.
(b) Find the domain and range of f.

$$
\begin{aligned}
& y=7+\ln (x+6) \\
& y-7=\ln (x+6) \\
& e^{y-7}=x+6 \\
& x=e^{y-7}-6 \\
& f^{-1}(x)=e^{x-7}-6
\end{aligned}
$$

domain: $(-\infty, \infty)$ Faye: $(-6, \infty)$

You can also determine domain ant sarge by considering the rage oil dover of f.
(V2) Let $f(x)=e^{x+4}-3$.
(a) Find $f^{-1}(x)$, the inverse function of f.
(b) Find the domain and range of f.

$$
\begin{gathered}
y=e^{x+4}-3 \\
y+3=e^{x+4} \\
\ln (y+3)=x+4 \\
x=\ln (y+3)-4 \\
f^{-1}(x)=\ln (x+3)-4
\end{gathered}
$$

Conan: $(-3, \infty)$
rare: $(-\infty, \infty)$
As above,
check by considering vane and domain of f.

4. (8 points)

(a) Solve for x :

$$
\begin{aligned}
& \frac{\operatorname{cose} 1}{\text { If } 13+5 x>0} \\
& \begin{array}{c}
\frac{\text { cost } 2}{\text { If }} \quad \\
2 x-1=|13+5 x| \\
2 x-1= \\
7 x=-(13+5 x) \\
7 x=-\frac{12}{7}
\end{array} \\
& \begin{array}{l}
\text { Neither of these } 3 \\
\text { a Solution, hover, }
\end{array} \\
& 2 x \sim 1=13+5 x \\
& -3 x=14 \\
& x=\frac{-14}{3} \\
& 5^{2 x-1}=25 . \\
& 5^{2 x-1}=5^{2} \\
& 2 x-1=2 \\
& 2 x=3 \\
& x=\frac{3}{2}
\end{aligned}
$$

(b)(V2) Solve for x :

$$
\log _{5}(2 x+1)=2
$$

$$
\begin{aligned}
5^{\log _{5}(2 x+1)} & =5^{2} \\
2 x+1 & =25 \\
2 x & =24 \\
x & =12
\end{aligned}
$$

5. (16 points) Compute the derivative of the following functions.
(a) $f(x)=\mathrm{e}^{\mathrm{e}^{e^{x}}}$

$$
f^{\prime}(x)=e^{e^{e^{x}}} e^{e^{x}} e^{x}
$$

(b) $f(x)=\cos (x \ln (x))$

$$
\begin{aligned}
& f(x)=\cos (x \ln (x)) \\
& f^{\prime}(x)=-\sin (x \ln x)\left(x\left(\frac{1}{x}\right)+\ln x\right)
\end{aligned}
$$

(c) $f(x)=\sqrt[3]{\sqrt{x^{4}}}$

$$
\begin{aligned}
& =\left[\left(x^{4}\right)^{\frac{1}{2}}\right]^{\frac{1}{3}}=\left(x^{2}\right)^{\frac{1}{3}}=x^{\frac{2}{3}} \\
& f^{\prime}(x)=\frac{2}{3} x^{-\frac{1}{3}}
\end{aligned}
$$

(d) $f(x)=\frac{\tan (x)}{x^{2}+1}$

$$
f^{\prime}(x)=\frac{\left(x^{2}+1\right) \sec ^{2} x-(\tan x)(2 x)}{\left(x^{2}+1\right)^{2}}
$$

6. (20 points) Evaluate the following limits. If a limit is infinite, say whether it is $+\infty,-\infty$, or neither.
(a) $\lim _{x \rightarrow 2^{-}} \frac{x^{2}+2 x-8}{x^{2}-4 x+4}=\lim _{x \rightarrow 2^{-}} \frac{(x-2)(x+4)}{(x-2)(x-2)}$ gives $\frac{6}{0}$ by diveat substitution,

So this limit is infinite. Since $x \rightarrow 2^{-}, x<2$, so $x-2<0$ Since the nuveroter 3 positive ane tho denowinto 3 mugctive, we get - Co. Cation!. Try using L'Hapital's rube.

$$
=\lim _{x \rightarrow 2^{-}} \frac{2 x+2}{2 x-4} \neq \lim _{x \rightarrow 2^{-}} \frac{2}{2}
$$

(b) $\lim _{x \rightarrow 0^{+}} x^{x}$

双not indeterminate
Set $y=x^{x}$
$\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}$, which has the incleteuminte form $-\infty$.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{1}{x}} \text { L'Hapital's }^{\prime} \text { vile, }=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}-x=0 \text {. Th } \ln _{x \rightarrow 0^{+}} e^{\ln y}=\ln _{x \rightarrow 0^{+}} y=e^{0}=1 .
\end{aligned}
$$

(c) $\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{2 x}+1}$

$$
=\lim _{x \rightarrow \infty} \frac{e^{x} 1}{e^{x}\left(e^{x}+\frac{1}{e^{x}}\right)}=0
$$

(d) $\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}\left(1+\frac{1}{x^{2}}\right)}}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}} \sqrt{1+\frac{1}{x^{2}}}}$

Since $x \rightarrow \infty, x>0$ and $\sqrt{x^{2}}=x$.

$$
=\lim _{x \rightarrow \infty} \frac{x 1}{x \sqrt{1+\frac{1}{x^{2}}}}=\frac{1}{\sqrt{1+0}}=1
$$

(e) $\lim _{h \rightarrow 0} \frac{\sqrt{5+h}-\sqrt{5}}{h}=f^{\prime}(5)$ when $f(x)=\sqrt{2}$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \\
& f^{\prime}(5)=\frac{1}{2 \sqrt{5}}
\end{aligned}
$$

7. (6 points) (V1) Consider the function $f(x)=|x-3|-2$.
(a) Since $f(0)=1$ and $f(4)=-1$, does the Intermediate Value Theorem guarantee that there is an x-value c in $(0,2)$ so that $f(c)=0$? (Only answer "Yes" or "No".) Yes
(b) Since $f(2)=-1$ and $f(4)=-1$, does the Mean Value Theorem guarantee that there is an x-value c in $(2,4)$ so that $f^{\prime}(c)=0$? (Only answer "Yes" or "No".)

No. (a) is yes, be cause $f(0)>0$ ane $f(4)<0$.
(V2) Consider the function $f(x)=|x+1|-2$.
(a) Since $f(-2)=-1$ and $f(2)=1$, does the Intermediate Value Theorem guarantee that there is an x-value c in $(-2,2)$ so that $f(c)=0$? (Only answer "Yes" or "No".) Yes
(b) Since $f(-2)=-1$ and $f(0)=-1$, does the Mean Value Theorem guarantee that there is an x-value c in $(-2,0)$ so that $f^{\prime}(c)=0$? (Only answer "Yes" or "No".) No
8. (10 points) Use logarithmic differentiation to find the second derivative of the following function:

$$
\begin{array}{rlrl}
f(x) & =x^{x} \\
y & =x^{x} & y^{\prime \prime} & =\frac{d}{d x}\left(x^{x}\right)(1+\ln x)+x^{x}\left(\frac{1}{x}\right) \\
\ln y & =x \ln x & & =x^{x}(1+\ln x)(1+\ln x)+x^{x-1} \\
y_{y}^{\prime} & =\frac{x}{x}+\ln x \\
y^{\prime} & =x^{x}(1+\ln x) &
\end{array}
$$

9. (14 points) $f(x)=x^{3}-3 x^{2}-9 x+4$
(a) Find all the critical numbers of f.
(b) Find the intervals over which f is increasing and over which f is decreasing.
(c) Find all local maximum and minimum values of f.
(d) Find all points of inflection of $y=f(x)$.
(e) Use the information in (a) through (d) to graph $y=f(x)$. You must plot the points at which local maximum and minimum values occur, any inflection points, and the y-intercept.
(a)

$$
\begin{aligned}
f^{\prime}(x)= & 3 x^{2}-6 x-9=0 \\
& 3\left(x^{2}-2 x-3\right)=0 \\
& 3(x-3)(x+1)=0
\end{aligned}
$$

$x=-1,3$ are the critical \#s.
(b) pos, meg pos $\xrightarrow{\text { mine on }(-\infty,-1) \text { ane }(3, \infty) ~}$ dec on $(-1,3)$
(c) $f(-1)=-1-3+9+4=9$ is a local max value $f(3)=-27-27+27+4=-23$ is a local min value.
(d) $f^{\prime \prime}(x)=6 x-6=0$

$$
\begin{gathered}
x-1=0 \\
x=1
\end{gathered}
$$

$(1,-7)$ is an inflection p t.
(e) $f(0)=4$

