Math 141: Calculus I
 Midterm 1 ANSWERS

October 23, 2014

1. (5 points) Find all values of x satisfying the inequality

$$
|4 x-2| \geq 14
$$

- The given inequality holds when $4 x-2 \geq 14$ or when $4 x-2 \leq-14$.
- Solving the first inequality gives $x \geq 4$, and solving the second inequality gives $x \leq-3$.
- Therefore, the solution is $x \leq-3$ or $x \geq 4$, which in interval notation is $(-\infty,-3] \cup[4, \infty)$.

2. (6 points) Find all values of t in the interval $[0,2 \pi]$ such that $\cos ^{2} t=\frac{1}{2}$.

- Taking the square root gives $\cos (t)= \pm \frac{1}{\sqrt{2}}= \pm \frac{\sqrt{2}}{2}$, which is one of the special angles.
- We see that there are four solutions in the interval $[0,2 \pi]$, namely $t=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$.

3. (12 points) Let $P=(3,7)$ and $Q=(5,3)$.
(a) Find the distance between P and Q.
-The distance formula gives $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(5-3)^{2}+(3-7)^{2}}=$ $\sqrt{20}=2 \sqrt{5}$.
(b) Find an equation for the line containing P and Q.
-The slope is $\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)=(3-7) /(5-3)=-2$.

- Since the line goes through $P=(3,7)$, we can write the equation in point-slope form as $y-7=-2(x-3)$.
\bullet There are other ways of writing this answer, like $y=-2 x+13$ or $2 x+y=13$.
(c) Find an equation for the line through P perpendicular to the line $5 x+15 y=1$.
-We can rearrange the given line to the equation $y=(-1 / 3) x+1 / 15$, so its slope is $-1 / 3$.
-Therefore, a line perpendicular to the given line must have slope $-1 /(-1 / 3)=3$.
- Using point-slope form, the line through P with slope 3 has equation $y-7=3(x-3)$.
-There are other ways of writing this answer, like $y=3 x-2$ or $-3 x+y=-2$.

4. (10 points) Find the following, in simplified form. (There should be no functions other than radicals and fractions in your answer.)
(a) The value of $\sin (\arctan (2 / 3))$.
-Let $\theta=\arctan (2 / 3)$. Then θ is the acute angle in a right triangle whose opposite side is 2 and whose adjacent side is 3 . By the Pythagorean Theorem, the hypotenuse in this triangle is $\sqrt{2^{2}+3^{2}}=\sqrt{13}$.
-Then $\sin (\arctan (2 / 3))=\sin (\theta)=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{2}{\sqrt{13}}$.
(b) The value of $\log _{3}(\sqrt{27})$.

- Since $\sqrt{27}=\left(3^{3}\right)^{1 / 2}=3^{3 / 2}$, the logarithm to the base 3 is $3 / 2$.

5. (6 points) Find all real numbers x such that $e^{2 x}-3 e^{x}+2=0$.

- Since $e^{2 x}=\left(e^{x}\right)^{2}$, we can factor as $\left(e^{x}-2\right)\left(e^{x}-1\right)=0$.
- This holds precisely when: $e^{x}=2$ or $e^{x}=1$.
- Taking the natural \log of both sides yields the two solutions $x=0, \ln (2)$.

6. (6 points) Find all real numbers y such that $\log _{2}(y)+\log _{2}(2 y)=\log _{2}(3 y)$.

- Combine the logarithms to get $\log _{2}\left(2 y^{2}\right)=\log _{2}(3 y)$.
- Now exponentiate both sides to get $2^{\log _{2}\left(2 y^{2}\right)}=2^{\log _{2}(3 y)}$, which simplifies to $2 y^{2}=3 y$.
- This equation has the two solutions $y=0$ and $y=3 / 2$.
- However, $y=0$ does not satisfy the original equation, because $\log _{2}(0)$ is undefined.

We can verify that $y=3 / 2$ does work, however, so it is the only solution.
7. (12 points) In the graph below, $y=|x|$.

Match the following curves to their equations.

Curves:

(a)

(b)

(c)

(d)

(e)

(f)

Equations:

1.) $y=|x-2|$
4.) $y=-|x|+2$
7.) $y=3+|x+1|$
2.) $y=|x+2|$
5.) $y=3-|x+1|$
8.) $y=|2 x+3|-1$
3.) $y=|x|+2$
6.) $y=-3+|x-1|$
9.) $y=2|x+3|-1$

Answers:
(a) 2
(b) 5
(c) 3
(d) 8
(e) 9
(f) 6
8. (12 points) Let $f(x)=x^{2}-4$ and $g(x)=\frac{2 x}{x-1}$.
(a) Find $(f \circ g)(2)-(g \circ f)(2)$.
-We have $f(g(2))=f(4)=4^{2}-4=12$ and $g(f(2))=g(0)=0$, so the answer is 12 .
(b) Find the domain of $(f \circ g)(x)$.

- We have $(f \circ g)(x)=\left(\frac{2 x}{x-1}\right)^{2}-4$.
- The only value of x for which this is undefined is $x=1$, so the domain is $x \neq 1$, or, in interval notation, $(-\infty, 1) \cup(1, \infty)$.

Continue to set $f(x)=x^{2}-4$ and $g(x)=\frac{2 x}{x-1}$.
(c) Find $g^{-1}(1)$.
-This is the value of x for which $g(x)=1$, giving the equation $\frac{2 x}{x-1}=1$.

- Clearing the denominator gives $2 x=x-1$, so $x=-1$.
(d) Find all horizontal and vertical asymptotes of the graph of $y=g(x)$.
-For vertical asymptotes, we need to find the values of x where the function goes to $\pm \infty$. Since $g(x)$ is a quotient, this can only occur when the denominator is zero namely, when $x=1$. We can see that $\lim _{x \rightarrow 1^{+}} g(x)=\infty$, so $x=1$ is the only vertical asymptote.
- For horizontal asymptotes, we compute

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x \cdot 2}{x \cdot(1-1 / x)}=\lim _{x \rightarrow \infty} \frac{2}{1-1 / x}=2
$$

and

$$
\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} \frac{x \cdot 2}{x \cdot(1-1 / x)}=\lim _{x \rightarrow-\infty} \frac{2}{1-1 / x}=2
$$

so $y=2$ is a horizontal asymptote as $x \rightarrow \pm \infty$.

- Note: Asymptotes are lines, and it was necessary to give the actual equation of the line for full credit. Saying merely " 1 " or " 2 " is not correct.

9. (25 points) Compute the following limits. Note that ∞ and $-\infty$ are possible answers. If a limit does not exist, you must explain why.
(a) $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-4 x+3}$
-We have $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-4 x+3}=\lim _{x \rightarrow 3} \frac{x-3}{(x-3)(x-1)}=\lim _{x \rightarrow 3} \frac{1}{x-1}=\frac{1}{2}$.
(b) $\lim _{x \rightarrow 2^{-}} \frac{e^{x}}{\tan (\pi x)+\pi x}$
-The numerator and denominator are both continuous and defined at $x=2$, so the limit is just $\frac{e^{2}}{\tan (2 \pi)+2 \pi}=\frac{e^{2}}{2 \pi}$.

- Note: For full credit, it was necessary to say that the function was continuous. (Essentially nobody did this.)
(c) $\lim _{w \rightarrow 3^{-}} \frac{7 w-5}{w^{2}-9}$
-The denominator goes to zero, so we isolate the term that is approaching zero: $\lim _{w \rightarrow 3^{-}} \frac{7 w-5}{(w-3)(w+3)}=\lim _{w \rightarrow 3^{-}} \frac{1}{w-3} \cdot \frac{7 w-5}{w+3}$.
\bullet As $w \rightarrow 3^{-}$, the first term goes to $-\infty$ while the second term goes to $\frac{7 \cdot 3-5}{3+3}=\frac{16}{6}$, so the limit is $-\infty$.
(d) $\lim _{y \rightarrow 4} \frac{y-4}{\sqrt{2 y+1}-\sqrt{y+5}}$
-We have

$$
\begin{aligned}
\lim _{y \rightarrow 4} \frac{y-4}{\sqrt{2 y+1}-\sqrt{y+5}} & =\lim _{y \rightarrow 4} \frac{y-4}{\sqrt{2 y+1}-\sqrt{y+5}} \cdot \frac{\sqrt{2 y+1}+\sqrt{y+5}}{\sqrt{2 y+1}+\sqrt{y+5}} \\
& =\lim _{y \rightarrow 4} \frac{(y-4)(\sqrt{2 y+1}+\sqrt{y+5})}{y-4} \\
& =\lim _{y \rightarrow 4}(\sqrt{2 y+1}+\sqrt{y+5})=\sqrt{9}+\sqrt{9}=6
\end{aligned}
$$

(e) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{3}+3 x+5}}{x^{2}-4 x-4}$

- We pull out the largest power of x from numerator and denominator separately:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{3}+3 x+5}}{x^{2}-4 x-4} & =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{3}\left(1+3 / x^{2}+5 / x^{3}\right)}}{x^{2}\left(1-4 / x-4 / x^{2}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{x^{3 / 2}}{x^{2}} \cdot \frac{\sqrt{1+3 / x^{2}+5 / x^{3}}}{1-4 / x-4 / x^{2}} \\
& =\lim _{x \rightarrow \infty} x^{-1 / 2} \cdot \frac{\sqrt{1+3 / x^{2}+5 / x^{3}}}{1-4 / x-4 / x^{2}}
\end{aligned}
$$

\bullet Now as $x \rightarrow \infty$, the first term goes to 0 while the second term goes to $\frac{\sqrt{1}}{1}=1$. Hence the limit is 0 .

- Note: Simply "zeroing out" everything but the largest terms is mathematically incorrect, and did not receive full credit.

10. (6 points) Find all real numbers c such that the function $f(x)= \begin{cases}c x^{2} & \text { if } x<2 \\ x^{3}-c x & \text { if } x \geq 2\end{cases}$ is continuous for all real numbers x.

- The two parts of the definition are each continuous for every real number x, so the only place there can be a problem is where the definition changes: namely, at $x=2$.
- We need to compute the left limit, right limit, and value:

$$
\begin{gathered}
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(c x^{2}\right)=4 c \\
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{3}-c x\right)=8-2 c \\
f(2)=8-2 c
\end{gathered}
$$

- These will all be equal when $4 c=8-2 c$, meaning $c=\frac{8}{6}=\frac{4}{3}$.
- Note: For full credit, it was necessary to write down the limits explicitly. Simply setting the two values equal and getting $c=4 / 3$ was not enough.

