
Math 141: Calculus I

Midterm 1 ANSWERS

October 23, 2014

1. (5 points) Find all values of x satisfying the inequality

|4x− 2| ≥ 14.

• The given inequality holds when 4x− 2 ≥ 14 or when 4x− 2 ≤ −14.

• Solving the first inequality gives x ≥ 4, and solving the second inequality gives x ≤ −3.

• Therefore, the solution is x ≤ −3 or x ≥ 4 , which in interval notation is (−∞,−3] ∪ [4,∞) .

2. (6 points) Find all values of t in the interval [0, 2π] such that cos2 t =
1

2
.

• Taking the square root gives cos(t) = ± 1√
2

= ±
√

2

2
, which is one of the special angles.

• We see that there are four solutions in the interval [0, 2π], namely t =
π

4
,
3π

4
,
5π

4
,
7π

4
.
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3. (12 points) Let P = (3, 7) and Q = (5, 3).

(a) Find the distance between P and Q.

•The distance formula gives
√

(x2 − x1)2 + (y2 − y1)2 =
√

(5− 3)2 + (3− 7)2 =
√

20 = 2
√

5 .

(b) Find an equation for the line containing P and Q.

•The slope is (y2 − y1)/(x2 − x1) = (3− 7)/(5− 3) = −2.

•Since the line goes through P = (3, 7), we can write the equation in point-slope

form as y − 7 = −2(x− 3) .

•There are other ways of writing this answer, like y = −2x+ 13 or 2x+ y = 13 .

(c) Find an equation for the line through P perpendicular to the line 5x+ 15y = 1.

•We can rearrange the given line to the equation y = (−1/3)x+ 1/15, so its slope is

−1/3.

•Therefore, a line perpendicular to the given line must have slope −1/(−1/3) = 3.

•Using point-slope form, the line through P with slope 3 has equation y − 7 = 3(x− 3) .

•There are other ways of writing this answer, like y = 3x− 2 or −3x+ y = −2 .
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4. (10 points) Find the following, in simplified form. (There should be no functions other

than radicals and fractions in your answer.)

(a) The value of sin(arctan(2/3)).

•Let θ = arctan(2/3). Then θ is the acute angle in a right triangle whose opposite

side is 2 and whose adjacent side is 3. By the Pythagorean Theorem, the hypotenuse

in this triangle is
√

22 + 32 =
√

13.

•Then sin(arctan(2/3)) = sin(θ) =
opposite

hypotenuse
=

2√
13

.

(b) The value of log3(
√

27).

•Since
√

27 = (33)1/2 = 33/2, the logarithm to the base 3 is 3/2 .
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5. (6 points) Find all real numbers x such that e2x − 3ex + 2 = 0.

• Since e2x = (ex)2, we can factor as (ex − 2)(ex − 1) = 0.

• This holds precisely when: ex = 2 or ex = 1.

• Taking the natural log of both sides yields the two solutions x = 0, ln(2) .

6. (6 points) Find all real numbers y such that log2(y) + log2(2y) = log2(3y).

• Combine the logarithms to get log2(2y
2) = log2(3y).

• Now exponentiate both sides to get 2log2(2y
2) = 2log2(3y), which simplifies to 2y2 = 3y.

• This equation has the two solutions y = 0 and y = 3/2.

• However, y = 0 does not satisfy the original equation, because log2(0) is undefined.

We can verify that y = 3/2 does work, however, so it is the only solution.
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7. (12 points) In the graph below, y = |x|.

x

y

Match the following curves to their equations.

Curves:

(a)
x

y

−3 −2 −1 1 2 3 4 5

1

2

3

4

(b)
x

y

−3 −2 −1 1 2 3 4 5

1

2

3

4

(c)
x

y

−3 −2 −1 1 2 3 4 5

1

2

3

4

(d)

x

y

−3 −2 −1 1 2 3 4 5
−1

1

2

3

4

(e)

x

y

−3 −2 −1 1 2 3 4 5
−1

1

2

3

4

5

(f)

x

y

−3 −2 −1 1 2 3 4

−3

−2

−1

1

2

Equations:

1.) y = |x− 2|

2.) y = |x+ 2|

3.) y = |x|+ 2

4.) y = −|x|+ 2

5.) y = 3− |x+ 1|

6.) y = −3 + |x− 1|

7.) y = 3 + |x+ 1|

8.) y = |2x+ 3| − 1

9.) y = 2|x+ 3| − 1

Answers:

(a) 2 (b) 5 (c) 3 (d) 8 (e) 9 (f) 6
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8. (12 points) Let f(x) = x2 − 4 and g(x) =
2x

x− 1
.

(a) Find (f ◦ g)(2)− (g ◦ f)(2).

•We have f(g(2)) = f(4) = 42 − 4 = 12 and g(f(2)) = g(0) = 0, so the answer is

12 .

(b) Find the domain of (f ◦ g)(x).

•We have (f ◦ g)(x) =

(
2x

x− 1

)2

− 4.

•The only value of x for which this is undefined is x = 1, so the domain is x 6= 1 ,

or, in interval notation, (−∞, 1) ∪ (1,∞) .
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Continue to set f(x) = x2 − 4 and g(x) =
2x

x− 1
.

(c) Find g−1(1).

•This is the value of x for which g(x) = 1, giving the equation
2x

x− 1
= 1.

•Clearing the denominator gives 2x = x− 1, so x = −1 .

(d) Find all horizontal and vertical asymptotes of the graph of y = g(x).

•For vertical asymptotes, we need to find the values of x where the function goes to

±∞. Since g(x) is a quotient, this can only occur when the denominator is zero –

namely, when x = 1. We can see that lim
x→1+

g(x) =∞, so x = 1 is the only vertical

asymptote.

•For horizontal asymptotes, we compute

lim
x→∞

g(x) = lim
x→∞

x · 2
x · (1− 1/x)

= lim
x→∞

2

1− 1/x
= 2

and

lim
x→−∞

g(x) = lim
x→−∞

x · 2
x · (1− 1/x)

= lim
x→−∞

2

1− 1/x
= 2

so y = 2 is a horizontal asymptote as x→ ±∞.

•Note: Asymptotes are lines, and it was necessary to give the actual equation of the

line for full credit. Saying merely “1” or “2” is not correct.
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9. (25 points) Compute the following limits. Note that ∞ and −∞ are possible answers.

If a limit does not exist, you must explain why.

(a) lim
x→3

x− 3

x2 − 4x+ 3

•We have lim
x→3

x− 3

x2 − 4x+ 3
= lim

x→3

x− 3

(x− 3)(x− 1)
= lim

x→3

1

x− 1
=

1

2
.

(b) lim
x→2−

ex

tan(πx) + πx

•The numerator and denominator are both continuous and defined at x = 2, so the

limit is just
e2

tan(2π) + 2π
=
e2

2π
.

•Note: For full credit, it was necessary to say that the function was continuous.

(Essentially nobody did this.)

(c) lim
w→3−

7w − 5

w2 − 9

•The denominator goes to zero, so we isolate the term that is approaching zero:

lim
w→3−

7w − 5

(w − 3)(w + 3)
= lim

w→3−

1

w − 3
· 7w − 5

w + 3
.

•As w → 3−, the first term goes to −∞ while the second term goes to
7 · 3− 5

3 + 3
=

16

6
,

so the limit is −∞ .
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(d) lim
y→4

y − 4√
2y + 1−

√
y + 5

•We have

lim
y→4

y − 4√
2y + 1−

√
y + 5

= lim
y→4

y − 4√
2y + 1−

√
y + 5

·
√

2y + 1 +
√
y + 5√

2y + 1 +
√
y + 5

= lim
y→4

(y − 4)(
√

2y + 1 +
√
y + 5)

y − 4

= lim
y→4

(√
2y + 1 +

√
y + 5

)
=
√

9 +
√

9 = 6 .

(e) lim
x→∞

√
x3 + 3x+ 5

x2 − 4x− 4

•We pull out the largest power of x from numerator and denominator separately:

lim
x→∞

√
x3 + 3x+ 5

x2 − 4x− 4
= lim

x→∞

√
x3(1 + 3/x2 + 5/x3)

x2(1− 4/x− 4/x2)

= lim
x→∞

x3/2

x2
·
√

1 + 3/x2 + 5/x3

1− 4/x− 4/x2

= lim
x→∞

x−1/2 ·
√

1 + 3/x2 + 5/x3

1− 4/x− 4/x2

•Now as x → ∞, the first term goes to 0 while the second term goes to

√
1

1
= 1.

Hence the limit is 0 .

•Note: Simply “zeroing out” everything but the largest terms is mathematically

incorrect, and did not receive full credit.
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10. (6 points) Find all real numbers c such that the function f(x) =

cx2 if x < 2

x3 − cx if x ≥ 2

is continuous for all real numbers x.

• The two parts of the definition are each continuous for every real number x, so the

only place there can be a problem is where the definition changes: namely, at x = 2.

• We need to compute the left limit, right limit, and value:

lim
x→2−

f(x) = lim
x→2−

(cx2) = 4c

lim
x→2+

f(x) = lim
x→2+

(x3 − cx) = 8− 2c

f(2) = 8− 2c

• These will all be equal when 4c = 8− 2c, meaning c =
8

6
=

4

3
.

• Note: For full credit, it was necessary to write down the limits explicitly. Simply

setting the two values equal and getting c = 4/3 was not enough.


