Math 141: Calculus I

Midterm 2 November 18, 2014

NAME (please print legibly): ______ Your University ID Number: ______ Indicate your instructor with a check in the appropriate box:

Prof. Kalyani Madhu	MWF $09:00 - 09:50$ AM	
Prof. Alex Rice	TR 2:00 – 3:15 PM	
Prof. Saul Lubkin	MW 2:00 – 3:15 PM	
Prof. Evan Dummit	TR $4:50 - 6:05$ PM	

- The presence of any electronic or calculating device at this exam is strictly forbidden, including (but not limited to) calculators, cell phones, and iPods.
- Show work and justify all answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You are responsible for checking that this exam has all 8 pages.

QUESTION	VALUE	SCORE
1	20	
2	10	
3	12	
4	18	
5	24	
6	16	
TOTAL	100	

1. (20 points)

(a) Complete the following definition: For a function f(x), we define a new function, called the *derivative* of f(x), by the formula

f'(x) =

(b) USE THE DEFINITION ABOVE to find f'(x) if $f(x) = \sqrt{1-2x}$.

2. (10 points) In the graph below, y = f(x), where f(x) is an unknown piece-wise function.

Which of these is the graph of f'(x)?

3. (12 points)

(a) The graphs below show y = g(x), y = g'(x), and y = g''(x) for some function g(x). Determine which is which. (You don't need to try to figure out a formula for g(x))

(b) On the axes below, graph $y = g^{(3)}(x)$, the third derivative of g.

Page 5 of 8

4. (18 points) Suppose that f and g are differentiable functions satisfying

$$f(2) = 0, \quad g(2) = a, \quad f'(2) = 1, \quad g'(2) = \pi, \quad f'(a) = 7$$

and assume $a \neq 0$.

(a) Let
$$h(x) = \frac{f}{g}(x)$$
. Find $h'(2)$ in terms of a .

(b) Let $h(x) = (f \circ g)(x)$. Find h'(2) in terms of a.

(c) Let $h(x) = g(x)e^{f(x)}$. Find h'(2) in terms of a.

5. (24 points)

(a) Find the derivative of $f(x) = x^3 + \cos(x) - e^x$ with respect to x.

(b) Find h'(x) if $h(x) = \sin(\sqrt{\tan(x)})$.

(c) Compute the value of g''(1), where $g(t) = \tan^{-1}(3t)$.

(d) Use logarithmic differentiation to find $\frac{dq}{dt}$ if $q = (t^5 + 1)^t$.

6. (16 points) Consider the implicit curve $C : 3x^3 + 4xy + y^5 = 8$. (You may assume this defines y implicitly as a function of x.)

(a) Find the implicit derivative $\frac{dy}{dx}$.

(b) Find an equation for the tangent line to the curve C at the point (x, y) = (1, 1).