Math 141: Calculus I

Midterm 2
November 18, 2014

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the appropriate box:

Prof. Kalyani Madhu	MWF 09:00 - 09:50 AM	
Prof. Alex Rice	TR 2:00-3:15 PM	
Prof. Saul Lubkin	MW 2:00 -3:15 PM	
Prof. Evan Dummit	TR 4:50-6:05 PM	

- The presence of any electronic or calculating device at this exam is strictly forbidden, including (but not limited to) calculators, cell phones, and iPods.
- Show work and justify all answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You are responsible for checking that this exam has all 8 pages.

QUESTION	VALUE	SCORE
1	20	
2	10	
3	12	
4	18	
5	24	
6	16	
TOTAL	100	

1. (20 points)

(a) Complete the following definition: For a function $f(x)$, we define a new function, called the derivative of $f(x)$, by the formula

$$
f^{\prime}(x)=
$$

(b) USE THE DEFINITION ABOVE to find $f^{\prime}(x)$ if $f(x)=\sqrt{1-2 x}$.
2. (10 points) In the graph below, $y=f(x)$, where $f(x)$ is an unknown piece-wise function.

Which of these is the graph of $f^{\prime}(x)$?
(a)

(b)

(c)

Answer: \qquad
3. (12 points)
(a) The graphs below show $y=g(x), y=g^{\prime}(x)$, and $y=g^{\prime \prime}(x)$ for some function $g(x)$. Determine which is which. (You don't need to try to figure out a formula for $g(x)$)
(a)

(b)

(c)

$$
g(x):
$$

$g^{\prime}(x):$

$$
g^{\prime \prime}(x):
$$

(b) On the axes below, graph $y=g^{(3)}(x)$, the third derivative of g.

4. (18 points) Suppose that f and g are differentiable functions satisfying

$$
f(2)=0, \quad g(2)=a, \quad f^{\prime}(2)=1, \quad g^{\prime}(2)=\pi, \quad f^{\prime}(a)=7
$$

and assume $a \neq 0$.
(a) Let $h(x)=\frac{f}{g}(x)$. Find $h^{\prime}(2)$ in terms of a.
(b) Let $h(x)=(f \circ g)(x)$. Find $h^{\prime}(2)$ in terms of a.
(c) Let $h(x)=g(x) e^{f(x)}$. Find $h^{\prime}(2)$ in terms of a.

5. (24 points)

(a) Find the derivative of $f(x)=x^{3}+\cos (x)-e^{x}$ with respect to x.
(b) Find $h^{\prime}(x)$ if $h(x)=\sin (\sqrt{\tan (x)})$.
(c) Compute the value of $g^{\prime \prime}(1)$, where $g(t)=\tan ^{-1}(3 t)$.
(d) Use logarithmic differentiation to find $\frac{d q}{d t}$ if $q=\left(t^{5}+1\right)^{t}$.
6. (16 points) Consider the implicit curve $C: 3 x^{3}+4 x y+y^{5}=8$. (You may assume this defines y implicitly as a function of x.)
(a) Find the implicit derivative $\frac{d y}{d x}$.
(b) Find an equation for the tangent line to the curve C at the point $(x, y)=(1,1)$.

