Math 141: Calculus I

Midterm 2 November 18, 2014

NAME (please print legibly): ______ Your University ID Number: ______ Indicate your instructor with a check in the appropriate box:

Prof. Kalyani Madhu	MWF $09:00 - 09:50$ AM	
Prof. Alex Rice	TR 2:00 – 3:15 PM	
Prof. Saul Lubkin	MW 2:00 – 3:15 PM	
Prof. Evan Dummit	TR $4:50 - 6:05$ PM	

- The presence of any electronic or calculating device at this exam is strictly forbidden, including (but not limited to) calculators, cell phones, and iPods.
- Show work and justify all answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You are responsible for checking that this exam has all 8 pages.

QUESTION	VALUE	SCORE
1	20	
2	10	
3	12	
4	18	
5	24	
6	16	
TOTAL	100	

1. (20 points)

(a) Complete the following definition: For a function f(x), we define a new function, called the *derivative* of f(x), by the formula

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

wherever this limit exists.

(b) USE THE DEFINITION ABOVE to find
$$f'(x)$$
 if $f(x) = \sqrt{1-2x}$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{\sqrt{1 - 2(x+h)} - \sqrt{1 - 2x}}{h} \cdot \frac{\sqrt{1 - 2(x+h)} + \sqrt{1 - 2x}}{\sqrt{1 - 2(x+h)} + \sqrt{1 - 2x}}$
= $\lim_{h \to 0} \frac{(1 - 2(x+h)) - (1 - 2x)}{h(\sqrt{1 - 2(x+h)} + \sqrt{1 - 2x})}$
= $\lim_{h \to 0} \frac{1 - 2x - 2h - 1 + 2x}{h(\sqrt{1 - 2(x+h)} + \sqrt{1 - 2x})}$
= $\lim_{h \to 0} \frac{-2h}{h(\sqrt{1 - 2(x+h)} + \sqrt{1 - 2x})}$
= $\lim_{h \to 0} \frac{-2}{\sqrt{1 - 2(x+h)} + \sqrt{1 - 2x}}$
= $\frac{-2}{\sqrt{1 - 2x} + \sqrt{1 - 2x}}$
= $\frac{-1}{\sqrt{1 - 2x}}$.

2. (10 points) In the graph below, y = f(x), where f(x) is an unknown piece-wise function.

Which of these is the graph of f'(x)?

Explanation (not required, just here for reference): Notice that f(x) has positively sloped tangent lines for x's in $(-\infty, -1)$, a horizontal tangent line at x = -1, then positively sloped tangent lines again between x = -1 and (roughly) x = 1.5, a horizontal tangent line at x = 1.5, and then negatively sloped tangent lines after that. Therefore, the y-coordinate on the graph of f'(x) must start out positive, touch 0 at x = -1, go back to positive until crossing 0 at x = 1.5, then remain negative.

3. (12 points)

(a) The graphs below show y = g(x), y = g'(x), and y = g''(x) for some function g(x). Determine which is which. (You don't need to try to figure out a formula for g(x))

(b) On the axes below, graph $y = g^{(3)}(x)$, the third derivative of g.

Note that from part (a) we know that g''(x) is constant, so therefore $g^{(3)}(x)$ is just ZERO, and the graph is just the x-axis.

4. (18 points) Suppose that f and g are differentiable functions satisfying

$$f(2) = 0$$
, $g(2) = a$, $f'(2) = 1$, $g'(2) = \pi$, $f'(a) = 7$

and assume $a \neq 0$.

(a) Let $h(x) = \frac{f}{g}(x)$. Find h'(2) in terms of a.

By the quotient rule, $h'(2) = \frac{g(2)f'(2) - f(2)g'(2)}{g(2)^2} = \frac{a(1) - 0(\pi)}{a^2} = \boxed{\frac{1}{a}}.$

(b) Let $h(x) = (f \circ g)(x)$. Find h'(2) in terms of a.

By the chain rule, $h'(2) = f'(g(2)) \cdot g'(2) = f'(a)g'(2) = \boxed{7\pi}$.

(c) Let $h(x) = g(x)e^{f(x)}$. Find h'(2) in terms of a.

By the product rule and the chain rule,

$$h'(2) = g'(2)e^{f(2)} + g(2)e^{f(2)}f'(2) = \pi e^0 + ae^0(1) = \pi a$$

5. (24 points)

(a) Find the derivative of $f(x) = x^3 + \cos(x) - e^x$ with respect to x.

•By basic derivatives this is $3x^2 - \sin(x) - e^x$.

(b) Find h'(x) if $h(x) = \sin(\sqrt{\tan(x)})$.

•By the Chain Rule we have

$$h(x) = \cos(\sqrt{\tan(x)}) \cdot \frac{d}{dx} \left[\sqrt{\tan(x)}\right]$$
$$= \cos(\sqrt{\tan(x)}) \cdot \frac{1}{2} (\tan(x))^{-1/2} \sec^2(x).$$

•′

(c) Compute the value of g''(1), where $g(t) = \tan^{-1}(3t)$.

•First we compute
$$g'(t) = \frac{1}{(3t)^2 + 1} \cdot 3 = \frac{3}{9t^2 + 1}$$
 by the Chain Rule.
•Then $g''(t) = \frac{0 \cdot (9t^2 + 1) - 3 \cdot 18t}{(9t^2 + 1)^2} = -\frac{54t}{(9t^2 + 1)^2}$.
•Evaluating, we have $g''(1) = \boxed{-\frac{54}{100}}$.

(d) Use logarithmic differentiation to find $\frac{dq}{dt}$ if $q = (t^5 + 1)^t$.

•We use logarithmic differentiation: $\ln(q(t)) = \sin(t) \cdot \ln(1 + \sin(t))$.

•Differentiating both sides (using the product rule on the right) gives

$$\frac{q'(t)}{q(t)} = \cos(t) \cdot \ln(1 + \sin(t)) + \sin(t) \cdot \frac{\cos(t)}{1 + \sin(t)}.$$

Thus, we get $q'(t) = \boxed{(1 + \sin(t))^{\sin(t)} \cdot \left[\cos(t) \cdot \ln(1 + \sin(t)) + \sin(t) \cdot \frac{\cos(t)}{1 + \sin(t)}\right]}$

6. (16 points) Consider the implicit curve $C : 3x^3 + 4xy + y^5 = 8$. (You may assume this defines y implicitly as a function of x.)

(a) Find the implicit derivative $\frac{dy}{dx}$.

- •We differentiate both sides, remembering to view y = y(x) as an implicit function of x, using the Product and Chain Rules.
- •We get $9x^2 + 4y + 4x \cdot y' + 5y^4y' = 0.$
- •Rearranging gives $(4x + 5y^4) \cdot y' = -(9x^2 + 4y)$, so $y' = \boxed{-\frac{9x^2 + 4y}{4x + 5y^4}}$.

(b) Find an equation for the tangent line to the curve C at the point (x, y) = (1, 1).

•From part (a), we get $y'(1,1) = -\frac{9+4}{4+5} = -\frac{13}{9}$.

•Thus by point-slope, the tangent line has equation $y - 1 = -\frac{13}{9}(x - 1)$.