Math 141: Calculus I

Midterm 2
November 18, 2014

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the appropriate box:

Prof. Kalyani Madhu	MWF 09:00 - 09:50 AM	
Prof. Alex Rice	TR 2:00-3:15 PM	
Prof. Saul Lubkin	MW 2:00 -3:15 PM	
Prof. Evan Dummit	TR 4:50-6:05 PM	

- The presence of any electronic or calculating device at this exam is strictly forbidden, including (but not limited to) calculators, cell phones, and iPods.
- Show work and justify all answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You are responsible for checking that this exam has all 8 pages.

QUESTION	VALUE	SCORE
1	20	
2	10	
3	12	
4	18	
5	24	
6	16	
TOTAL	100	

1. (20 points)

(a) Complete the following definition: For a function $f(x)$, we define a new function, called the derivative of $f(x)$, by the formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

wherever this limit exists.
(b) USE THE DEFINITION ABOVE to find $f^{\prime}(x)$ if $f(x)=\sqrt{1-2 x}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{1-2(x+h)}-\sqrt{1-2 x}}{h} \cdot \frac{\sqrt{1-2(x+h)}+\sqrt{1-2 x}}{\sqrt{1-2(x+h)}+\sqrt{1-2 x}} \\
& =\lim _{h \rightarrow 0} \frac{(1-2(x+h))-(1-2 x)}{h(\sqrt{1-2(x+h)}+\sqrt{1-2 x})} \\
& =\lim _{h \rightarrow 0} \frac{1-2 x-2 h-1+2 x}{h(\sqrt{1-2(x+h)}+\sqrt{1-2 x})} \\
& =\lim _{h \rightarrow 0} \frac{-2 h}{h(\sqrt{1-2(x+h)}+\sqrt{1-2 x})} \\
& =\lim _{h \rightarrow 0} \frac{-2}{\sqrt{1-2(x+h)}+\sqrt{1-2 x}} \\
& =\frac{-2}{\sqrt{1-2 x}+\sqrt{1-2 x}} \\
& =\frac{-1}{\sqrt{1-2 x}} .
\end{aligned}
$$

2. (10 points) In the graph below, $y=f(x)$, where $f(x)$ is an unknown piece-wise function.

Which of these is the graph of $f^{\prime}(x)$?
(a)

(b)

(c)

Answer: a

Explanation (not required, just here for reference): Notice that $f(x)$ has positively sloped tangent lines for x 's in $(-\infty,-1)$, a horizontal tangent line at $x=-1$, then positively sloped tangent lines again between $x=-1$ and (roughly) $x=1.5$, a horizontal tangent line at $x=1.5$, and then negatively sloped tangent lines after that. Therefore, the y-coordinate on the graph of $f^{\prime}(x)$ must start out positive, touch 0 at $x=-1$, go back to positive until crossing 0 at $x=1.5$, then remain negative.

3. (12 points)

(a) The graphs below show $y=g(x), y=g^{\prime}(x)$, and $y=g^{\prime \prime}(x)$ for some function $g(x)$. Determine which is which. (You don't need to try to figure out a formula for $g(x)$)
(a)

(b)

(c)

$$
g(x): \mathrm{b}
$$

$g^{\prime}(x):$ a

$$
g^{\prime \prime}(x): \mathrm{c}
$$

(b) On the axes below, graph $y=g^{(3)}(x)$, the third derivative of g.

Note that from part (a) we know that $g^{\prime \prime}(x)$ is constant, so therefore $g^{(3)}(x)$ is just ZERO, and the graph is just the x-axis.
4. (18 points) Suppose that f and g are differentiable functions satisfying

$$
f(2)=0, \quad g(2)=a, \quad f^{\prime}(2)=1, \quad g^{\prime}(2)=\pi, \quad f^{\prime}(a)=7
$$

and assume $a \neq 0$.
(a) Let $h(x)=\frac{f}{g}(x)$. Find $h^{\prime}(2)$ in terms of a.

By the quotient rule, $h^{\prime}(2)=\frac{g(2) f^{\prime}(2)-f(2) g^{\prime}(2)}{g(2)^{2}}=\frac{a(1)-0(\pi)}{a^{2}}=\frac{1}{a}$.
(b) Let $h(x)=(f \circ g)(x)$. Find $h^{\prime}(2)$ in terms of a.

By the chain rule, $h^{\prime}(2)=f^{\prime}(g(2)) \cdot g^{\prime}(2)=f^{\prime}(a) g^{\prime}(2)=7 \pi$.
(c) Let $h(x)=g(x) e^{f(x)}$. Find $h^{\prime}(2)$ in terms of a.

By the product rule and the chain rule,

$$
h^{\prime}(2)=g^{\prime}(2) e^{f(2)}+g(2) e^{f(2)} f^{\prime}(2)=\pi e^{0}+a e^{0}(1)=\pi+a .
$$

5. (24 points)

(a) Find the derivative of $f(x)=x^{3}+\cos (x)-e^{x}$ with respect to x.

- By basic derivatives this is $3 x^{2}-\sin (x)-e^{x}$.
(b) Find $h^{\prime}(x)$ if $h(x)=\sin (\sqrt{\tan (x)})$.
- By the Chain Rule we have

$$
\begin{aligned}
h(x) & =\cos (\sqrt{\tan (x)}) \cdot \frac{d}{d x}[\sqrt{\tan (x)}] \\
& =\cos (\sqrt{\tan (x)}) \cdot \frac{1}{2}(\tan (x))^{-1 / 2} \sec ^{2}(x)
\end{aligned}
$$

(c) Compute the value of $g^{\prime \prime}(1)$, where $g(t)=\tan ^{-1}(3 t)$.

- First we compute $g^{\prime}(t)=\frac{1}{(3 t)^{2}+1} \cdot 3=\frac{3}{9 t^{2}+1}$ by the Chain Rule.
-Then $g^{\prime \prime}(t)=\frac{0 \cdot\left(9 t^{2}+1\right)-3 \cdot 18 t}{\left(9 t^{2}+1\right)^{2}}=-\frac{54 t}{\left(9 t^{2}+1\right)^{2}}$.
- Evaluating, we have $g^{\prime \prime}(1)=-\frac{54}{100}$.
(d) Use logarithmic differentiation to find $\frac{d q}{d t}$ if $q=\left(t^{5}+1\right)^{t}$.
- We use logarithmic differentiation: $\ln (q(t))=\sin (t) \cdot \ln (1+\sin (t))$.
- Differentiating both sides (using the product rule on the right) gives

$$
\frac{q^{\prime}(t)}{q(t)}=\cos (t) \cdot \ln (1+\sin (t))+\sin (t) \cdot \frac{\cos (t)}{1+\sin (t)}
$$

-Thus, we get $q^{\prime}(t)=(1+\sin (t))^{\sin (t)} \cdot\left[\cos (t) \cdot \ln (1+\sin (t))+\sin (t) \cdot \frac{\cos (t)}{1+\sin (t)}\right]$.
6. (16 points) Consider the implicit curve $C: 3 x^{3}+4 x y+y^{5}=8$. (You may assume this defines y implicitly as a function of x.)
(a) Find the implicit derivative $\frac{d y}{d x}$.
-We differentiate both sides, remembering to view $y=y(x)$ as an implicit function of x, using the Product and Chain Rules.

- We get $9 x^{2}+4 y+4 x \cdot y^{\prime}+5 y^{4} y^{\prime}=0$.
\bullet Rearranging gives $\left(4 x+5 y^{4}\right) \cdot y^{\prime}=-\left(9 x^{2}+4 y\right)$, so $y^{\prime}=-\frac{9 x^{2}+4 y}{4 x+5 y^{4}}$.
(b) Find an equation for the tangent line to the curve C at the point $(x, y)=(1,1)$.
- From part (a), we get $y^{\prime}(1,1)=-\frac{9+4}{4+5}=-\frac{13}{9}$.
-Thus by point-slope, the tangent line has equation $y-1=-\frac{13}{9}(x-1)$.

